The general form of non-linear single-phase pressure diffusion @model with the finite number of wells is given by:
|
|
|
where
p(t, {\bf r}) | reservoir pressure | t | time |
\rho({\bf r},p) | fluid density | {\bf r } | position vector |
\phi({\bf r}, p) | effective porosity | {\bf r }_k | position vector of the k-th source |
c_t({\bf r},p) | total compressibility | \delta ( \bf r ) | Dirac delta function |
M = k / \mu | \nabla | gradient operator | |
k | formation permeability to a given fluid | { \bf g } | gravity vector |
\mu | dynamic viscosity of a given fluid | { \bf u } | fluid velocity under Darcy flow |
q_k(t) | sandface flowrates of the k-th well | \Gamma | reservoir boundary |
{\rm F}_{\Gamma}(p, {\bf u}) | reservoir boundary flow condition through the reservoir boundary \Gamma, which is usually the aquifer or gas cap |
The alternative form is to write down equations (1) and (2) in reservoir volume outside wellbore and match the solution to the fluid flux through the well-reservoir contact:
|
| ||||
|
|
where
\Sigma_k | well-reservoir contact of the k-th well |
d {\bf \Sigma} | normal vector of differential area on the well-reservoir contact, pointing inside wellbore |
q_k(t) | sandface flowrates at the k-th well (could be injecting to or producing from the reservoir ) |
Physical models of pressure diffusion can be split into two categories: Newtonian and Rheological (non-Newtonian) based on the fluid stress model.
Mathematical models of pressure diffusion can be split into three categories: Linear, Pseudo-Linear and Non-linear.
These models are built using Numerical, Analytical or Hybrid pressure diffusion solvers.
Many popular 1DR solutions can be approximated by Radial Flow Pressure Diffusion @model which has a big methodological value.
The simplest analytical solutions for pressure diffusion are given by 1DL Linear-Drive Solution (LDS) and 1DR Line Source Solution (LSS).
See also
Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model
[ Aquifer Drive Models ] [ Gas Cap Drive Models ]
[ Linear single-phase pressure diffusion @model ]