Page tree

Motivation


In many practical cases the reservoir fluid flow created by well is getting aligned with a radial direction towards or away from well.

This type of reservoir fluid flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

The radial flow can be infinite acting or boundary dominated or transiting from one to another.


Although the actual reservoir fluid flow may not have an axial symmetry around the well-reservoir contact or around reservoir inhomogeneities (like boundary and faults and composite areas) but still in many practical cases the reservoir flow tends to become radial after some time which makes a Radial Flow Pressure Diffusion @model (in its general form or in particular BVP solution) a popular diagnostic tool. 


Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(t,r)

reservoir pressure

{p_i}

initial formation pressure

{p_{wf}(t)}

well bottomhole pressure

\sigma

transmissibility, \sigma = \frac{k \, h}{\mu}



\chi

pressure diffusivity, \chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}



S

skin-factor

r_w

wellbore radius

r_e

drainage radius (could be infinite)


k

absolute permeability

c_t

total compressibility, c_t = c_r + c

h

effective thickness

{c_r}

pore compressibility

\mu

dynamic fluid viscosity

c

fluid compressibility

{\phi}

porosity



Physical Model


Radial fluid flowHomogenous reservoirInfinite boundarySlightly compressible fluid flowConstant rateConstant skin

p(t, {\bf r}) \rightarrow p(t, r)

{\bf r} \in ℝ^2 = \{ x, y\}

M(r, p)=M =\rm const

\phi(r, p)=\phi =\rm const

h(r)=h =\rm const

c_r(r)=c_r =\rm const

r \rightarrow \infty

r_w = 0

c_t(r,p) = \rm const

q_t = \rm const

S = \rm const


Mathematical Model




(1) r_{wf} < r \leq r_e
(2) \frac{\partial p}{\partial t} = \chi \, \left( \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right)
(3) p(t = 0, {\bf r}) = p_i
(4) p(t, r \rightarrow r_e ) = p_i)

or

(5) \left[ \frac{\partial p}{\partial r} \right]_{r =r_e} = 0
(6) \left[ r\frac{\partial p(t, r )}{\partial r} \right]_{r \rightarrow r_w} = \frac{q_t}{2 \pi \sigma}
(7) p_{wf}(t)= p(t,r_w) - S \cdot r_w \, \frac{\partial p}{\partial r} \Bigg|_{r=r_w}

There is no universal analytical solution to the above problem (1) (7) but it can be always presented as below:

(8) p(t,r) = p_i - \frac{q_t}{4 \pi \sigma} \, F \bigg( - \frac{r^2}{4 \chi t} \bigg)
(9) p_{wf}(t) = p_i - \frac{q_t}{4 \pi \sigma} \, \bigg[2S + F \bigg( - \frac{r_w^2}{4 \chi t} \bigg) \bigg]

where F(\xi) is a single-argument function describing the peculiarities of the diffusion model (well geometry, penetration geometry, formation inhomogeneities, hydraulic fractures, boundary conditions, etc.).

The fact that solution of equations (1)(7) can be presented as (8)(9) finds a lot of practical applications in Well Testing.


Applications



Equations  (8) and  (9) show how the basic diffusion model parameters impact the pressure response while other diffusion parameters are encoded in  F function and play important methodological role as they are used in many algorithms and express-methods of Pressure Testing.



In case of infinite homogeneous reservoir, produced by a infinitely small vertical well with no skin and no wellbore storage the  F function has an exact analytical formula, given by exponential integral  F(z) = - {\rm Ei} (z) (see Line Source Solution (LSS) @model).



PTA – Pressure Transient Analysis



Pressure Drop
(10) \delta p = p_i - p_{wf}(t) \sim \ln t + {\rm const}


Log derivative
(11) t \frac{d (\delta p)}{dt} \sim \rm const





Fig. 2. PTA Diagnostic plot for radial fluid flow



The instantaneous Total Sandface Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressurebottomhole pressure and the flowrate and can be expressed as:

(12) J_t(t) = \frac{q_t}{p_i - p_{wf}(t)} =\frac{ 2 \pi \sigma }{ S - 0.5 \, F \left( - \frac{r_w^2}{4 \chi t} \right) }


Isobar equation for a constant-rate production:

(13) p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \, F \bigg( - \frac{r^2}{4 \chi t} \bigg) = {\rm const} \quad \rightarrow \quad \frac{r^2}{4 \chi t}= {\rm const}


Since the pressure disturbance at  t=0 moment was at well walls  r=r_w then the formula for constant-pressure front propagation becomes:

(14) r(t) = r_w + 2 \sqrt{\chi t}

This leads to estimation of isobar velocity:

(15) u_p(t) = \sqrt{\frac{\chi}{t}}


See Also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow / Pressure diffusion / Pressure Diffusion @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ]

Line Source Solution (LSS) @model ] [ Linear Flow Pressure Diffusion @model ]




  • No labels