Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 118 Next »


The general form of non-linear 
single-phase pressure diffusion @model with the finite number of wells  is given by: 

(1) \phi \cdot c_t \cdot \partial_t p + \nabla {\bf u} + c \cdot ( {\bf u} \, \nabla p) = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(2) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
(3) {\rm F}_{\Gamma}(p, {\bf u}) = 0

where

p(t, {\bf r})

reservoir pressure

t

time

\rho({\bf r},p)

fluid density 

{\bf r }

position vector

\phi({\bf r}, p)

effective porosity 

{\bf r }_k

position vector of the k-th source

c_t({\bf r},p)

total compressibility 

\delta ( \bf r )

Dirac delta function

M = k / \mu

\nabla

gradient operator

k

formation permeability to a given fluid

{ \bf g }

gravity vector

\mu

dynamic viscosity of a given  fluid

{ \bf u }

fluid velocity under Darcy flow 

q_k(t)

sandface flowrates of the k-th well

\Gamma

reservoir boundary

{\rm F}_{\Gamma}(p, {\bf u})

reservoir boundary flow condition through the reservoir boundary \Gamma, which is usually the  aquifer or gas cap




The alternative form is to write down equations  (1) and  (2) in reservoir volume outside wellbore and match the solution to the fluid flux through the well-reservoir contact:

(4) \phi \cdot c_t \cdot \partial_t p + \nabla {\bf u} + c \cdot ( {\bf u} \, \nabla p) = 0
(5) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
(6) \int_{\Sigma_k} \, {\bf u} \, d {\bf \Sigma} = q_k(t)
(7) {\rm F}_{\Gamma}(p, {\bf u}) = 0

where

\Sigma_k

well-reservoir contact of the  k-th well

d {\bf \Sigma}

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

q_k(t)

sandface flowrates at the  k-th well (could be injecting to or producing from the reservoir )


Physical models of pressure diffusion can be split into two categories: Newtonian and Rheological (non-Newtonian) based on the fluid stress model.

Mathematical models of pressure diffusion can be split into three categories: LinearPseudo-Linear and Non-linear

These models are built using Numerical, Analytical or Hybrid pressure diffusion solvers.

Many popular 1DR solutions can be approximated by Radial Flow Pressure Diffusion @model which has a big methodological value.


The simplest analytical solutions for pressure diffusion are given by 1DL Linear-Drive Solution (LDS) and 1DR Line Source Solution (LSS)


The table below shows a list of popular well and reservoir pressure diffusion models which in some cases maybe simulated with analytical methods to speed up the calculations.

Wellbore storage modelWell modelReservoir modelBoundary model
ConstantSkin-factor

Homogeneous

Unconstrained
FairVertical wellDual-porosity
Infinite
Rate-dependant

Fractured vertical well

Dual-permeabilityFully constrained

Limited entry wellAnisotropic reservoir
Circle No Flow / Circle Constant Pi

Horizontal wellMulti-layer reservoir
Rectangular No Flow / Rectangular Constant Pi

Slanted wellLinear-compositePartially constrained

Multifrac horizontal well

Radial-composite
Single fault




Parallel faults




Intersecting Faults


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model

[ Aquifer Drive Models ] [ Gas Cap Drive Models ]

[ Linear single-phase pressure diffusion @model ]




  • No labels