The general form of objective function for production targets optimisation is given by:
(1) |
G = \sum_{y=1}^{N_y} \frac{AG_y}{(1+r)^y} \rightarrow \rm max
|
|
(2) |
AG_y = \sum_{t=1+y_t}^{365+y_t} G_t = \sum_{t=1+y_t}^{365+y_t}
\left( G_t^{+} - G_t^{-} \right)
|
|
|
(3) |
G_t^{+} = \sum_{k=1}^{N^{\uparrow}_P} \left[ R_O(t) \cdot q^{\uparrow}_{O, k}(t) + R_G(t) \cdot q^{\uparrow}_{G, k}(t) \right]
|
|
(4) |
G_t^{-} =
\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{L,k} \cdot q^{\uparrow}_{L, k}(t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{O,k} \cdot q^{\uparrow}_{O, k} (t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{G,k} \cdot q^{\uparrow}_{G, k} (t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{W,k} \cdot q^{\uparrow}_{W, k}(t)
+\sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i}(t)
+\sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t)
+ C_{WS} \cdot q_{WS}(t)
+ C_{GS} \cdot q_{GS}(t)
|
|
(5) |
q_{WS}(t) = \sum_{i=1}^{N^{\downarrow}_W} q^{\downarrow}_{W, i}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{W, k}(t)
|
|
(6) |
C_{WS}(t)= \begin{cases}
C^{\uparrow}_{WS}(t), & \mbox{if } q_{WS}(t)>0
\\
C^{\downarrow}_{WS}(t), & \mbox{if } q_{WS}(t)<0
\end{cases}
|
|
(7) |
q_{GS}(t) = \sum_{j=1}^{N^{\downarrow}_G} q^{\downarrow}_{G, j}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{G, k}(t)
|
|
(8) |
C_{GS}(t)= \begin{cases}
C^{\uparrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0
\\
C^{\downarrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0
\end{cases}
|
|
where
| years | assessment period | | days | running time in the form of the number of days past the start of production
t=0 | | | number of whole years past the start of production by the current moment
t |
---|
| – | discount rate |
|
|
|
|
|
|
---|
| volume/day | oil production rate for
k-th producer | | cash/volume | cost of produced oil treatment and transportation from
k-th wellhead to CTM | | cash/volume | oil selling price |
---|
| volume/day | gas production rate for
k-th producer | | cash/volume | cost of produced gas treatment and transportation from
k-th wellhead to CTM | | cash/volume | gas selling price |
---|
| volume/day | water production rate for
k-th producer | | cash/volume | cost of produced water treatment and transportation from
k-th wellhead to CTM | | counts | |
---|
| volume/day | liquid production rate for
k-th producer | | cash/volume | cost of fluid lift from reservoir to the
k-th wellhead, cash/volume | |
| |
---|
| volume/day | water supply/disposal rate | | cash/volume | cost of water supply | | cash/volume | cost of water disposal |
---|
| volume/day | gas supply/disposal rate | | cash/volume | cost of gas supply | | cash/volume | cost of gas disposal |
---|
| volume/day | water injection rate for
i-th water injector | | cash/volume | cost of water injection, including treatment, transportation and pumping into
i-th well | | counts | number of water injectors at
t |
---|
| volume/day | gas injection rate for
i-th gas injector | | cash/volume | cost of gas injection, including purchase, treatment, transportation and pumping into
i-th well | | counts
| number of gas injectors at
t |
---|
The objective function
(1) can be rewritten in terms of Surface flowrates
\{ q^{\uparrow}_L, q^{\downarrow}_W, q^{\downarrow}_G \} and usual subject to engineering restrictions:
(9) |
G_t = \sum_{p=1}^{N^{\uparrow}_P} C^{\uparrow}_{OGW}(t) \cdot q^{\uparrow}_{L, p}(t)
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,i} \cdot q^{\downarrow}_{W, i}(t)
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t)
- C_{WS} \cdot q_{WS}(t)
- C_{GS} \cdot q_{GS}(t) |
|
(10) |
C^{\uparrow}_{OGW}(t) = \left[ (R_O(t) - C^{\uparrow}_{O,p}) + (R_G(t) - C^{\uparrow}_{G,p}) \cdot Y_{G,p}(t) \right] \cdot (1- Y_{W,p}(t))
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p}(t)
|
|
(11) |
0 \leq q^{\uparrow}_{L, p}(t) \leq q^{\uparrow}_{LMAX, p}(t) |
|
(12) |
0 \leq q^{\downarrow}_{W, i}(t) \leq q^{\downarrow}_{WMAX, i}(t) |
|
(13) |
0 \leq q^{\downarrow}_{G, j}(t) \leq q^{\downarrow}_{GMAX, j}(t) |
|
(14) |
\sum_{p=1}^{N^{\uparrow}_P} q^{\uparrow}_{L, p}(t) \leq q^{\uparrow}_{LMAX}
|
|
(15) |
q^{\downarrow}_{WMIN}(t) \leq
\sum_{i=1}^{N^{\downarrow}_W} q^{\downarrow}_{W, i}(t)
\leq q^{\downarrow}_{WMAX}
|
|
(16) |
\sum_{j=1}^{N^{\downarrow}_G} q^{\downarrow}_{G, j}(t)
\leq q^{\downarrow}_{GMAX} |
|
|
(17) |
q^{\downarrow}_{WMIN}(t) = \sum_{p=1}^{N^{\uparrow}_P} q^{\uparrow}_{W, p}(t)
|
|
|
where
Y_{W,k}(t) = q_{W,k} / q_{L,k} | |
---|
Y_{G,k}(t) = q_{G,k} / q_{O,k} | Gas-Oil Ratio in
k-th well |
---|
Sandface Formalism
The objective function
(9) can be further rewritten in terms of Sandface flowrates
\{ q^{\uparrow}_t, q^{\downarrow}_w, q^{\downarrow}_g \}:
(18) |
G = \sum_{k=1}^{N^{\uparrow}_P} G^{\uparrow}_{t,k} \cdot q^{\uparrow}_{t, k}
- \sum_{i=1}^{N^{\downarrow}_W} G^{\downarrow}_{w,i} \cdot
q^{\downarrow}_{w, i}
- \sum_{j=1}^{N^{\downarrow}_G} G^{\downarrow}_{g,j} \cdot q^{\downarrow}_{g, j} -
- C_{WS} \cdot q_{WS}(t)
- C_{GS} \cdot q_{GS}(t)
\rightarrow \rm max |
(19) |
G^{\uparrow}_{t,k} = \frac{\left[ (R_O - C^{\uparrow}_{O,k}) + (R_G - C^{\uparrow}_{G,k}) \cdot Y_{G,k} \right] \cdot (1- Y_{W,k})
- C^{\uparrow}_{L,k} - C^{\uparrow}_{W,k} \cdot Y_{W,k} }
{B_{w,k} Y_{W,k} + \left[ (B_{o,k} - R_{s,k} B_{g,k}) + (B_{g,k} - R_{v,k} B_{o,k}) \, Y_{G,k} \right] \cdot (1-Y_{w,k})} |
(20) |
G^{\downarrow}_{w,i} = B_{w,i} C^{\downarrow}_{W,i} |
(21) |
G^{\downarrow}_{g,i} = B_{g,i} \cdot C^{\downarrow}_{G,i} |
where
B_{w,k} = B_w(p_{wf,k}(t)) | | | |
---|
B_{o,k} = B_o(p_{wf,k}(t)) | |
R_{s,k} = R_s(p_{wf,k}(t)) | Solution GOR in
k-th well |
---|
B_{g,k} = B_g(p_{wf,k}(t)) | |
R_{v,k} = R_v(p_{wf,k}(t)) | |
---|
Derivation
(22) |
G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[
(R_O - C^{\uparrow}_{O,p}) \cdot q^{\uparrow}_{O, p} + (R_G - C^{\uparrow}_{G,p}) \cdot q^{\uparrow}_{G, p}
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot q^{\uparrow}_{W, p}
\right]
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i}
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}
|
(23) |
G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[
\left[ (R_O - C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot Y_{G,p} \right] \cdot q^{\uparrow}_{O, p}
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p} \cdot q^{\uparrow}_{L, p}
\right]
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i}
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}
|
(24) |
G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[
\left[ (R_O - C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot Y_{G,p} \right] \cdot (1- Y_{W,p})
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p}
\right] \cdot q^{\uparrow}_{L, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i}
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}
|
Translating
q^{\downarrow}_{W, i} and
q^{\downarrow}_{G, j} to Sandface flowrates
q^{\downarrow}_{w, i} and
q^{\downarrow}_{g, j} with formation volume factor and substituting liquid production rate
q^{\uparrow}_{L, p} from
(Liquid production rate = qL:1) one arrives to:
(25) |
G(t) = \sum_{p=1}^{N^{\uparrow}_P} \frac{\left[ (R_O - C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot Y_{g,p} \right] \cdot (1- Y_{w,p})
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p} }
{B_w Y_{W,p} + \left[ (B_o - R_s B_g) + (B_g - R_v B_o) \, Y_{G,p} \right] \cdot (1-Y_{W,p})}
\cdot q^{\uparrow}_{t, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot B_w \cdot q^{\downarrow}_{w, i}
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot B_g \cdot q^{\downarrow}_{g, j}
|
which is equivalent to
(18).
Depending on Lift mechanism the rates in equation
(18) may be set directly or calculated from THP and formation pressure
p_e (which is a usual case in injection wells):
(26) |
q^{\uparrow}_{t, k} = J_{t,k} \cdot ( p_{e,k} - p_{wf,k} ) |
(27) |
q^{\downarrow}_{w,i} = J_{w,i} \cdot ( p_{wf,i} - p_{e,i} ) |
(28) |
q^{\downarrow}_{g,i} = J_{g,i} \cdot ( p_{wf,i} - p_{e,i} ) |
Producing wells may spontaneously vary between Constant rate production: qL = const and Constant pressure production: pwf = const (see Constant rate production: qL = const for alternation details).
See Also
Petroleum Industry / Upstream / Production / Field Development Plan
Subsurface Production / Well & Reservoir Management / [ Production Targets ]
Subsurface E&P Disciplines / Production Technology
[ Constant rate production: qL = const ] [ Constant pressure production: pwf = const ]