Page tree

@wikipedia


Amount of heat required to change the temperature of one unit of mole by one unit of temperature:

(1) c = \frac{C}{\nu} = \frac{1}{\nu} \cdot \frac{\delta Q}{\delta T}

where

\nu

amount of chemical substance 

C

heat capacity of the material
SymbolDimensionSI unitsOil metric unitsOil field units

c

M L2 T−2 Θ−1J/(molK)J/(molK)

 BTU/(mol°R)


Molar Heat Capacity is related to Specific Heat Capacity  c_m and Volumetric Heat Capacity  c_v as:

(2) c = M \cdot c_m
(3) c = V_m \cdot c_v

where

M

molar mass of the substance 

V_m

molar volume of the substance 



Molar Heat Capacity depends on the way the heat is transferred and as such is not a material property.

The two major heat transfer processes are isobaric and isohoric which define:


The relation between Isobaric molar heat capacity and Isochoric molar heat capacity is given by Mayer's relation which particularly implies that Isobaric molar heat capacity is always greater than  Isochoric molar heat capacity:

(4) c_P \geq c_V


For incompressible matter the Isobaric molar heat capacity (cP) and Isochoric molar heat capacity (cV) are identical:

(5) c_P = c_V

Most solids have about the same Molar Heat Capacity

(6) c_P \approx c_V \approx 3 \, R \approx 24.94 \, \, {\rm J/(mol⋅K)}

where

R

Gas constant


For the ideal gas the Molar Heat Capacity is predicted as:

(7) c_V = \frac{f}{2} \, R
(8) c_P = c_V + R = \frac{f+2}{2} \, R

where

f

number of molecular freedom degrees


Most aklanes reach values  (7) and  (8) at very high temperatures (thousands of K).


The Molar Heat Capacity of the mixture in thermodynamic equilibrium follows the simple mixing rule:

(9) c = \sum_i \, x_i \, c_i

where

x_i

mole fraction of the  i-th mixture component, subjected to \sum_i x_i= 1

c_i

molar heat capacity of the  i-th mixture component


See also


Physics / Thermodynamics / Thermodynamic processHeat Transfer / Heat Capacity

[ Heat ][ Heat Capacity Ratio (γ) ]Mayer's relation ]





  • No labels