Page tree


The general form of the Linear single-phase pressure diffusion @model 
with the finite number of sources/sinks \Sigma_k is given by: 

(1) \phi \cdot c_t \cdot \partial_t p + \nabla {\bf u} = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(2) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
(3) \int_{\Gamma} \, {\bf u} \, d {\bf \Sigma} = q_\Gamma(t)


or
(4) \phi \cdot c_t \cdot \partial_t p + \nabla {\bf u} = 0
(5) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
(6) \int_{\Sigma_k} \, {\bf u} \, d {\bf \Sigma} = q_k(t)
(7) \int_{\Gamma} \, {\bf u} \, d {\bf \Sigma} = q_\Gamma(t)

where

p(t, {\bf r})

reservoir pressure

t

time

\rho({\bf r})

fluid density 

{\bf r }

position vector

\phi({\bf r})

effective porosity 

{\bf r }_k

position vector of the k-th source

c_t({\bf r})

total compressibility 

\delta ( \bf r )

Dirac delta function

M({\bf r})

reservoir fluid mobility M({\bf r}) = \frac{k({\bf r})}{\mu}

\nabla

gradient operator

k({\bf r})

formation permeability to a given fluid

{ \bf g }

gravity vector

\mu

dynamic viscosity of a given  fluid

{ \bf u }

fluid velocity under Darcy flow 

q_k(t)

sandface flowrates of the k-th source

\Gamma

reservoir boundary

q_\Gamma(t)

flow through the reservoir boundary \Gamma, which is  aquifer or gas cap




Physical models of pressure diffusion can be split into two categories: Newtonian and Rheological (non-Newtonian) based on the fluid stress model.

Mathematical models of pressure diffusion can be split into three categories: LinearPseudo-Linear and Non-linear

These models are built using Numerical, Analytical or Hybrid pressure diffusion solvers.

Many popular 1DR solutions can be approximated by Radial Flow Pressure Diffusion @model which has a big methodological value.


The simplest analytical solutions for pressure diffusion are given by 1DL Linear-Drive Solution (LDS) and 1DR Line Source Solution (LSS)


The table below shows a list of popular well and reservoir pressure diffusion models.


Wellbore storage modelWell modelReservoir modelBoundary model
ConstantSkin-factorHomogeneousInfinite
FairVertical wellDual-porosityCircle No Flow
Rate-dependant

Fractured vertical well

Dual-permeabilityCircle Constant Pi

Limited entry wellAnisotropic reservoirSingle fault

Horizontal wellMulti-layer reservoirParallel faults

Slanted wellLinear-compositeIntersecting Faults

Multifrac horizontal well

Radial-composite


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model



  • No labels