Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

Motivation


In many practical cases the reservoir fluid flow created by well is getting aligned with a radial direction towards or away from well.

This type of reservoir fluid flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

The radial flow can be infinite acting or boundary dominated or transiting from one to another.


Although the actual reservoir fluid flow may not have an axial symmetry around the well-reservoir contact or around reservoir inhomogeneities (like boundary and faults and composite areas) but still  in many practical cases the long-term correlation between the flowrate and bottom-hole pressure response can be approximated by a radial flow pressure model


Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(t,r)

reservoir pressure

{p_i}

initial formation pressure

{p_{wf}(t)}

well bottomhole pressure

\sigma

transmissibility, \sigma = \frac{k \, h}{\mu}



\chi

pressure diffusivity, \chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}



S

skin-factor


k

absolute permeability

c_t

total compressibility, c_t = c_r + c

h

effective thickness

{c_r}

pore compressibility

\mu

dynamic fluid viscosity

c

fluid compressibility

{\phi}

porosity



Physical Model


Radial fluid flowHomogenous reservoirInfinite boundarySlightly compressible fluid flowConstant rateConstant skin

p(t, {\bf r}) \rightarrow p(t, r)

{\bf r} \in ℝ^2 = \{ x, y\}

M(r, p)=M =\rm const

\phi(r, p)=\phi =\rm const

h(r)=h =\rm const

c_r(r)=c_r =\rm const

r \rightarrow \infty

r_w = 0

c_t(r,p) = \rm const

q_t = \rm const

S = \rm const


Mathematical Model




(1) \frac{\partial p}{\partial t} = \chi \, \left( \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right)
(2) p(t = 0, {\bf r}) = p_i
(3) p(t, r \rightarrow \infty ) = p_i
(4) \left[ r\frac{\partial p(t, r )}{\partial r} \right]_{r \rightarrow r_w} = \frac{q_t}{2 \pi \sigma}
(5) p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \, F \bigg( - \frac{r^2}{4 \chi t} \bigg)
(6) p_{wf}(t) = p_i + \frac{q_t}{4 \pi \sigma} \, \bigg[ - 2S + F \bigg( - \frac{r_w^2}{4 \chi t} \bigg) \bigg]

where F(\xi) a single-argument function describing the peculiarities of the diffusion model (well geometry, penetration geometry, formation inhomogeneities, hydraulic fractures, boundary conditions, etc.)


Applications



Equations  (5) and  (6) show how the basic diffusion model parameters impact the pressure response while other diffusion parameters are encoded in  F function and play important methodological role as they are used in many algorithms and express-methods of Pressure Testing.



In case of infinite homogeneous reservoir, produced by a infinitely small vertical well with no skin and no wellbore storage the  F function has an exact analytical formula, given by exponential integral  F(z) = {\rm Ei}_1 (z) (see Line Source Solution (LSS) @model).



PTA – Pressure Transient Analysis



Pressure Drop
(7) \delta p = p_i - p_{wf}(t) \sim \ln t + {\rm const}


Log derivative
(8) t \frac{d (\delta p)}{dt} \sim \rm const





Fig. 2. PTA Diagnostic plot for radial fluid flow



The Productivity Index for single-phase low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottom-hole pressure and the flow rate and can be expressed as:

(9) J(t) = \frac{q_t}{p_i - p_{wf}(t)} =\frac{ 4 \pi \sigma }{ 2S - F \bigg( - \frac{r_w^2}{4 \chi t} \bigg) }


Isobar equation for a constant-rate production:

(10) p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \, F \bigg( - \frac{r^2}{4 \chi t} \bigg) = {\rm const} \quad \rightarrow \quad \frac{r^2}{4 \chi t}= {\rm const}


Since the pressure disturbance at  t=0 moment was at well walls  r=r_w then the formula for constant-pressure front propagation becomes:

(11) r(t) = r_w + 2 \sqrt{\chi t}

This leads to estimation of isobar velocity:

(12) u_p(t) = \sqrt{\frac{\chi}{t}}


See Also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ] [ Pressure diffusion @model ][ Line Source Solution (LSS) @model ]

Linear Flow Pressure Diffusion @model ]




  • No labels