Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Specific case of general multi-phase pressure diffusion assuming the equivalent  with 3-phase Oil + Gas + Water fluid model which assumes that pressure diffusion is equivalent to single-phase diffusion with constant specifically averaged dynamic parameters, thus resulting in linear partial differential equation with constant coefficients

LaTeX Math Block
anchorDiffP
alignmentleft
\phi \, c_t \, \partial_t p - \nabla \big( M \cdot ( \nabla p - \rho \cdot \mathbf{g} ) \big)  = \sum_k \, q_k(t) \cdot \delta(\mathbf{r}) \delta(-\mathbf{r}_k)

where

LaTeX Math Inline
body

mathblock

anchor

t

qt
time
alignment

LaTeX Math Inline

leftq_t(\mathbf{r}) = q_w + q_o + q_g = B_w \, q_W + (B_o - R_v \, B_g) \, q_O + (B_g - R_s \, B_

body--uriencoded--%7B\rm r%7D = (x,y,z)

reservoir location

LaTeX Math Inline
body--uriencoded--\mathbf%7Br%7D_k

Well–reservoir contact for 

LaTeX Math Inline
bodyk
-th  well


LaTeX Math Block
anchor1
alignmentleft
p = \frac{1}{3} \cdot \left( p_w + p_o + p_g \right)



3-phase average reservoir pressure


LaTeX Math Block
anchorqt
alignmentleft
q_t(\mathbf{r}) = q_w + q_o + q_g = B_w \, q_W + (B_o - R_s \, B_g) \, q_O + (B_g - R_v \, B_o) \, q_G



total sandface flowrate
at reservoir location

LaTeX Math Inline
body\mathbf{r}


LaTeX Math Block
anchor1
alignmentleft
B_w, \ B_o, \ B_g 



formation volume factors
at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchor1
alignmentleft
\phi(\mathbf{r})



effective porosity
in reservoir location

LaTeX Math Inline
body\bf r
at reference pressure
LaTeX Math Inline
bodyp_{\rm ref}


LaTeX Math Block
anchor0OM3S
alignmentleft
s(\mathbf{r}) = \{ s_w(\mathbf{r}), \ s_o(\mathbf{r}), \ s_g(\mathbf{r})  \}



reservoir saturation
as a function of location

LaTeX Math Inline
body\bf r



LaTeX Math Block
anchor0OM3S
alignmentleft
c_t = c_r + c_w s_w +  c_o s_o +  c_g s_g  + s_o [ R_{sp} + (c_r  + c_o)  R_{sn} ] + s_g [ R_{vp} + R_{vn}(c_r + c_g) ]



LaTeX Math Block
anchor1
alignmentleft
с_r



reservoir pore compressibility
at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}


LaTeX Math Block
anchor1
alignmentleft
с_w, \ с_o, \ с_g



fluid compressibilities
at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchorRHTVX
alignmentleft
M = M_w + M_o \big( 1 + R_{sn} \big) + M_g \big( 1 + R_{vn} \big)



total fluid mobility
at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchor6OXKP
alignmentleft
M_w = k_a \cdot M_{rw}



water mobility
at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchor6OXKP
alignmentleft
M_o = k_a \cdot M_{ro}



oil mobility at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchor6OXKP
alignmentleft
M_g = k_a \cdot M_{rg}



gas mobility at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchorQBU02
alignmentleft
M_{rw} = \frac{k_{rw}(s)}{\mu_w}



relative water mobility
at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchorQBU02
alignmentleft
M_{ro} = \frac{k_{ro}(s)}{\mu_o}



relative oil mobility at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchorQBU02
alignmentleft
M_{rg} = \frac{k_{rg}(s)}{\mu_g}



relative gas mobility at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}


LaTeX Math Block
anchor1
alignmentleft
k_a(\mathbf{r})



absolute permeability
as a function of location

LaTeX Math Inline
body\bf r
at reference pressure
LaTeX Math Inline
bodyp_{\rm ref}



LaTeX Math Block
anchor1
alignmentleft
\mu_w, \ \mu_o, \ \mu_g



water
, oil, gas dynamic viscosity at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}



LaTeX Math Block
anchor1
alignmentleft
R_{sn} = \frac{R_s B_g}{B_o} \ , \quad R_{vn} = \frac{R_v B_o}{B_g}



LaTeX Math Block
anchor1
alignmentleft
R_{sp} = \frac{\dot R_s B_g}{B_o} \ , \quad R_{vp} = \frac{\dot R_v B_o}{B_g}



LaTeX Math Block
anchorQL1DV
alignmentleft
\rho = \frac{ M_{rw} \rho_w + M_{ro}  (1 + R_{sn}) \rho_o  + M_{rg}  (1+R_{vn}) \rho_g }{ M_{rw}  + M_{ro}  (1 + R_{sn})  + M_{rg}  (1+R_{vn}) }



LaTeX Math Block
anchor1
alignmentleft
g = 9.81 \ \textrm{m} / \textrm{s}^2



standard gravity


LaTeX Math Block
anchor
1
der
alignmentleft
 \big (   \big)^{\LARGE \cdot} = \frac{d}{dp}



differentiation
with respect to the pressure


All the above dynamic properties are calculated at reference pressure

LaTeX Math Inline
bodyp_{\rm ref}
and temperature
LaTeX Math Inline
bodyT_{\rm ref}
 thus making 
LaTeX Math Block Reference
anchorDiffP
 a linear partial differential equation.

...

LaTeX Math Block
anchor2
alignmentleft
p_{\rm ref} = p_e


The above equations Вышеприведенные формулы 

LaTeX Math Block Reference
anchor1DiffP
 – 
LaTeX Math Block Reference
anchor18
 представляют собой обобщение оригинальной модели
der
 is generalization of original model [1][2] на случай летучей нефти.

Для случае черной нефти (

LaTeX Math Inline
bodyR_v = R_{vn} = R_{vp} = 0
) некторые из вышеприведенных формул упрощаются:

to the case of Volatile Oil fluid model



In case of Black Oil fluid model (

LaTeX Math Inline
bodyR_v = R_{vn} = R_{vp} = 0
) some equations are simplified:


LaTeX Math Block
anchor1
alignmentleft
q_t =  B_w \, q_W + B_o \, q_O + B_g \, ( q_G - R_s \, q_O)



LaTeX Math Block
anchor0OM3S
alignmentleft
c_t(s) = c_r
LaTeX Math Block
anchor1
alignmentleft
q_t =  B_w \, q_W + B_o \, q_O + B_g \, ( q_G - R_s \, q_O)

суммарный отбор воды, нефти и газа в пластовых условиях

LaTeX Math Block
anchor0OM3S
alignmentleft
c_t(s) = c_r (1 + R_{sn} s_o ) + c_w s_w + c_o s_o (1+R_{sn}) + c_g s_g  + R_{sp} s_o 

эффективная сжимаемость пласта с мультифазным насыщением как функция насыщенности при опорном давлении

LaTeX Math Inline
bodyP_{\bf ref}

LaTeX Math Block
anchorRHTVX
alignmentleft
\alpha(s) = \Big \langle \frac{k} {\mu} \Big \rangle = \alpha_w(s) + \alpha_o(s) \big( 1 + R_{sn} \big) + \alpha_g(s) 

эффективная проводимость пород  как функция насыщенности при опорном давлении

LaTeX Math Inline
bodyP_{\bf ref}

LaTeX Math Block
anchorQL1DV
alignmentleft
\rho_{\alpha} = \frac{ \alpha_{rw} \rho_w + \alpha_{ro} \rho_o
 (1 + R_{sn} s_o ) 
+ 
\alpha_{rg} \rho_g }{ \alpha_{rw} + \alpha_{ro} (1 +
c_w s_w + c_o s_o (1+R_{sn})
 + 
\alpha_{rg} }

гравитационная компонента потока при опорном давлении

LaTeX Math Inline
bodyP_{\bf ref}

...

c_g s_g  + R_{sp} s_o 



LaTeX Math Block
anchor
1
RHTVX
alignmentleft
q_t
M(s) = \Big \langle \frac{k} {\mu} \Big \rangle = 
B
M_w(s) + 
\, q_W
M_o(s) \big( 1 + 
B_o q_Oсуммарный отбор воды, нефти и газа в пластовых условиях
R_{sn} \big) + \alpha_g(s) 



LaTeX Math Block
anchor
0OM3S
QL1DV
alignmentleft
c_t(s)
\rho = 
c_r + c_w s
\frac{ M_{rw} \rho_w + 
c_o s_o

эффективная сжимаемость пласта с мультифазным насыщением как функция насыщенности при опорном давлении

LaTeX Math Inline
bodyP_{\bf ref}

LaTeX Math Block
anchor1
alignmentleft
\alpha(s) = \Big \langle \frac{k} {\mu} \Big \rangle = \alpha_w(s) + \alpha_o(s)
M_{ro}(1 + R_{sn}) \rho_o  + M_{rg} \rho_g  }{ M_{rw}  + M_{ro}  (1 + R_{sn})  + M_{rg}  }



For the 2-phase Oil + Water fluid model (where  Linear Perrine multi-phase diffusion mode is the most accurate ) the above equations are getting even simpler:


LaTeX Math Block
anchor1
alignmentleft
q_t = B_w \, q_W + B_o  q_O



LaTeX Math Block
anchor0OM3S
alignmentleft
c_t(s) = c_r  + c_w s_w + c_o s_o



LaTeX Math Block
anchor1
alignmentleft
M(s)

эффективная проводимость пород  как функция насыщенности при опорном давлении

LaTeX Math Inline
bodyP_{\bf ref}

LaTeX Math Block
anchorQL1DV
alignmentleft
\rho_{\alpha} = \frac{ \alpha_{rw} \rho_w + \alpha_{ro} \rho_o   }{ \alpha_{rw}  + \alpha_{ro}}

гравитационная компонента потока при опорном давлении

LaTeX Math Inline
bodyP_{\bf ref}

LaTeX Math Block
anchorPerrine2phase_alpha
alignmentleft
\sigma
 = \Big \langle \frac{k} {\mu} \Big \rangle
\, h
 = M_w(s) + M_o(s)



LaTeX Math Block
anchorQL1DV
alignmentleft
\rho = 
k
\
, h\, \Bigg[ \
frac{
k
 M_{rw}
}{
 \
mu
rho_w
}
 + 
\frac{k
M_{ro} \rho_o   }{
\mu_o} \Bigg] гидропроводность пласта при опорном давлении LaTeX Math InlinebodyP_{\bf ref}
 M_{rw}  + M_{ro}}



Despite the fact that in many practical cases the Linear Perrine multi-phase diffusion model leads to inaccurate pressure predictions it still:

...

Pressure diffusion models ] [ Linear Perrine multi-phase diffusion @model derivation ]


Reference

...

...


  1. Anchor
    Perrine
    Perrine

...

  1.  Perrine, R.L. 1956. Analysis of Pressure Buildup Curves. Drill. and Prod. Prac., 482. Dallas, Texas: API.

...


  1. Anchor
    Martin
    Martin
     SPE-1235-G,

...

  1. Martin, J.C.

...

  1. , Simplified Equations of Flow in Gas Drive Reservoirs and the Theoretical Foundation of Multiphase Pressure Buildup Analyses

...

  1. , 1959


Show If
grouparax


Panel
bgColorpapayawhip
titleARAX

Perrine.xls 


...