Specific case of general multi-phase pressure diffusion with 3-phase Oil + Gas + Water fluid model which assumes that pressure diffusion is equivalent to single-phase diffusion with specifically averaged dynamic parameters, thus resulting in linear partial differential equation with constant coefficients: 

\phi \, c_t \, \partial_t p - \nabla \big( M \cdot ( \nabla p - \rho \cdot \mathbf{g} ) \big)  = \sum_k \, q_k(t) \cdot \delta(\mathbf{r} -\mathbf{r}_k)

where

time

reservoir location


p = \frac{1}{3} \cdot \left( p_w + p_o + p_g \right)



3-phase average reservoir pressure


q_t(\mathbf{r}) = q_w + q_o + q_g = B_w \, q_W + (B_o - R_s \, B_g) \, q_O + (B_g - R_v \, B_o) \, q_G



B_w, \ B_o, \ B_g 



\phi(\mathbf{r})



effective porosity
in reservoir location at reference pressure


s(\mathbf{r}) = \{ s_w(\mathbf{r}), \ s_o(\mathbf{r}), \ s_g(\mathbf{r})  \}



reservoir saturation
as a function of location



c_t = c_r + c_w s_w +  c_o s_o +  c_g s_g  + s_o [ R_{sp} + (c_r  + c_o)  R_{sn} ] + s_g [ R_{vp} + R_{vn}(c_r + c_g) ]



с_r



с_w, \ с_o, \ с_g



M = M_w + M_o \big( 1 + R_{sn} \big) + M_g \big( 1 + R_{vn} \big)



M_w = k_a \cdot M_{rw}



M_o = k_a \cdot M_{ro}



M_g = k_a \cdot M_{rg}



M_{rw} = \frac{k_{rw}(s)}{\mu_w}



M_{ro} = \frac{k_{ro}(s)}{\mu_o}



M_{rg} = \frac{k_{rg}(s)}{\mu_g}



k_a(\mathbf{r})



absolute permeability
as a function of location at reference pressure



\mu_w, \ \mu_o, \ \mu_g



R_{sn} = \frac{R_s B_g}{B_o} \ , \quad R_{vn} = \frac{R_v B_o}{B_g}



R_{sp} = \frac{\dot R_s B_g}{B_o} \ , \quad R_{vp} = \frac{\dot R_v B_o}{B_g}



\rho = \frac{ M_{rw} \rho_w + M_{ro}  (1 + R_{sn}) \rho_o  + M_{rg}  (1+R_{vn}) \rho_g }{ M_{rw}  + M_{ro}  (1 + R_{sn})  + M_{rg}  (1+R_{vn}) }



g = 9.81 \ \textrm{m} / \textrm{s}^2



standard gravity


 \big (   \big)^{\LARGE \cdot} = \frac{d}{dp}



differentiation
with respect to the pressure


All the above dynamic properties are calculated at reference pressure and temperature  thus making  a linear partial differential equation.

The reference temperature   is more or less in practical cases.

The choice of the reference pressure  depends on the task.


For accurate modelling of early time pressure response (ETR) it is recommended to use initial bottom hole pressure at the moment of the test: 

p_{\rm ref} = p_{wf}(t=0)


For accurate modelling of late time pressure response (LTR) it is recommended to use current formation pressure: 

p_{\rm ref} = p_e


The above equations  –  is generalization of original model ( [1][2])  to the case of Volatile Oil fluid model



In case of Black Oil fluid model () some equations are simplified:


q_t =  B_w \, q_W + B_o \, q_O + B_g \, ( q_G - R_s \, q_O)



c_t(s) = c_r (1 + R_{sn} s_o ) + c_w s_w + c_o s_o (1+R_{sn}) + c_g s_g  + R_{sp} s_o 



M(s) = \Big \langle \frac{k} {\mu} \Big \rangle = M_w(s) + M_o(s) \big( 1 + R_{sn} \big) + \alpha_g(s) 



\rho = \frac{ M_{rw} \rho_w + M_{ro}(1 + R_{sn}) \rho_o  + M_{rg} \rho_g  }{ M_{rw}  + M_{ro}  (1 + R_{sn})  + M_{rg}  }



For the 2-phase Oil + Water fluid model (where  Linear Perrine multi-phase diffusion mode is the most accurate ) the above equations are getting even simpler:


q_t = B_w \, q_W + B_o  q_O



c_t(s) = c_r  + c_w s_w + c_o s_o



M(s) = \Big \langle \frac{k} {\mu} \Big \rangle = M_w(s) + M_o(s)



\rho = \frac{ M_{rw} \rho_w + M_{ro} \rho_o   }{ M_{rw}  + M_{ro}}



Despite the fact that in many practical cases the Linear Perrine multi-phase diffusion model leads to inaccurate pressure predictions it still:

This makes Linear Perrine multi-phase diffusion model a helpful analytical and  methodological tool for multiphase dynamic analysis.


One should remember that high content of light oil and gas in reservoir and high drawdowns deteriorate the accuracy of Linear Perrine multi-phase diffusion model.


More accurate pressure estimations are provided by the following pressure diffusion models:
 

See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing

Pressure diffusion models ] [ Linear Perrine multi-phase diffusion @model derivation ]


Reference



  1.  Perrine, R.L. 1956. Analysis of Pressure Buildup Curves. Drill. and Prod. Prac., 482. Dallas, Texas: API.

  2.  SPE-1235-G, Martin, J.C., Simplified Equations of Flow in Gas Drive Reservoirs and the Theoretical Foundation of Multiphase Pressure Buildup Analyses, 1959



Perrine.xls