Page tree


Specific case of general multi-phase pressure diffusion with 3-phase Oil + Gas + Water fluid model which assumes that pressure diffusion is equivalent to single-phase diffusion with specifically averaged dynamic parameters, thus resulting in linear partial differential equation with constant coefficients: 

(1) \phi \, c_t \, \partial_t p - \nabla \big( M \cdot ( \nabla p - \rho \cdot \mathbf{g} ) \big) = \sum_k \, q_k(t) \cdot \delta(\mathbf{r} -\mathbf{r}_k)

where

t

time

{\rm r} = (x,y,z)

reservoir location

\mathbf{r}_k

Well–reservoir contact for  k-th  well

(2) p = \frac{1}{3} \cdot \left( p_w + p_o + p_g \right)


3-phase average reservoir pressure

(3) q_t(\mathbf{r}) = q_w + q_o + q_g = B_w \, q_W + (B_o - R_s \, B_g) \, q_O + (B_g - R_v \, B_o) \, q_G


total sandface flowrate
at reservoir location \mathbf{r}

(4) B_w, \ B_o, \ B_g


formation volume factors
at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(5) \phi(\mathbf{r})


effective porosity
in reservoir location \bf r at reference pressure p_{\rm ref}

(6) s(\mathbf{r}) = \{ s_w(\mathbf{r}), \ s_o(\mathbf{r}), \ s_g(\mathbf{r}) \}


reservoir saturation
as a function of location \bf r


(7) c_t = c_r + c_w s_w + c_o s_o + c_g s_g + s_o [ R_{sp} + (c_r + c_o) R_{sn} ] + s_g [ R_{vp} + R_{vn}(c_r + c_g) ]


total multiphase compressibility at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(8) с_r


reservoir pore compressibility
at reference pressure p_{\rm ref}

(9) с_w, \ с_o, \ с_g


fluid compressibilities
at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(10) M = M_w + M_o \big( 1 + R_{sn} \big) + M_g \big( 1 + R_{vn} \big)


total fluid mobility
at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(11) M_w = k_a \cdot M_{rw}


water mobility
at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(12) M_o = k_a \cdot M_{ro}


oil mobility at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(13) M_g = k_a \cdot M_{rg}


gas mobility at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(14) M_{rw} = \frac{k_{rw}(s)}{\mu_w}


relative water mobility
at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(15) M_{ro} = \frac{k_{ro}(s)}{\mu_o}

relative oil mobility at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(16) M_{rg} = \frac{k_{rg}(s)}{\mu_g}


relative gas mobility at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(17) k_a(\mathbf{r})


absolute permeability
as a function of location \bf r at reference pressure p_{\rm ref}


(18) \mu_w, \ \mu_o, \ \mu_g


water
, oil, gas dynamic viscosity at reference pressure p_{\rm ref} and temperature T_{\rm ref}


(19) R_{sn} = \frac{R_s B_g}{B_o} \ , \quad R_{vn} = \frac{R_v B_o}{B_g}


normalized cross-phase exchange ratios
at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(20) R_{sp} = \frac{\dot R_s B_g}{B_o} \ , \quad R_{vp} = \frac{\dot R_v B_o}{B_g}
(21) \rho = \frac{ M_{rw} \rho_w + M_{ro} (1 + R_{sn}) \rho_o + M_{rg} (1+R_{vn}) \rho_g }{ M_{rw} + M_{ro} (1 + R_{sn}) + M_{rg} (1+R_{vn}) }


mobility-weighted fluid density
at reference pressure p_{\rm ref} and temperature T_{\rm ref}

(22) g = 9.81 \ \textrm{m} / \textrm{s}^2

standard gravity
(23) \big ( \big)^{\LARGE \cdot} = \frac{d}{dp}


differentiation
with respect to the pressure


All the above dynamic properties are calculated at reference pressure p_{\rm ref} and temperature T_{\rm ref} thus making  (1) a linear partial differential equation.

The reference temperature  T_{\rm ref}  is more or less in practical cases.

The choice of the reference pressure  p_{\rm ref} depends on the task.


For accurate modelling of early time pressure response (ETR) it is recommended to use initial bottom hole pressure at the moment of the test: 

(24) p_{\rm ref} = p_{wf}(t=0)


For accurate modelling of late time pressure response (LTR) it is recommended to use current formation pressure: 

(25) p_{\rm ref} = p_e


The above equations  (1) –  (23) is generalization of original model ( [1][2])  to the case of Volatile Oil fluid model



In case of Black Oil fluid model ( R_v = R_{vn} = R_{vp} = 0) some equations are simplified:

(26) q_t = B_w \, q_W + B_o \, q_O + B_g \, ( q_G - R_s \, q_O)
(27) c_t(s) = c_r (1 + R_{sn} s_o ) + c_w s_w + c_o s_o (1+R_{sn}) + c_g s_g + R_{sp} s_o
(28) M(s) = \Big \langle \frac{k} {\mu} \Big \rangle = M_w(s) + M_o(s) \big( 1 + R_{sn} \big) + \alpha_g(s)
(29) \rho = \frac{ M_{rw} \rho_w + M_{ro}(1 + R_{sn}) \rho_o + M_{rg} \rho_g }{ M_{rw} + M_{ro} (1 + R_{sn}) + M_{rg} }


For the 2-phase Oil + Water fluid model (where  Linear Perrine multi-phase diffusion mode is the most accurate ) the above equations are getting even simpler:

(30) q_t = B_w \, q_W + B_o q_O
(31) c_t(s) = c_r + c_w s_w + c_o s_o
(32) M(s) = \Big \langle \frac{k} {\mu} \Big \rangle = M_w(s) + M_o(s)
(33) \rho = \frac{ M_{rw} \rho_w + M_{ro} \rho_o }{ M_{rw} + M_{ro}}


Despite the fact that in many practical cases the Linear Perrine multi-phase diffusion model leads to inaccurate pressure predictions it still:

  • provides fair understanding on how pressure responds to multi-phase intakes to or offtakes from formation

  • introduce a concept of multiphase transmissibility, diffusivity, compressibility, mobility and total sandface flowrate which are very helpful in multiphase dynamic analysis

  • provides fair understanding on how the above properties depend on reservoir porosity, permeability, saturation, compressibility and PVT/SCAL model

This makes Linear Perrine multi-phase diffusion model a helpful analytical and  methodological tool for multiphase dynamic analysis.


One should remember that high content of light oil and gas in reservoir and high drawdowns deteriorate the accuracy of Linear Perrine multi-phase diffusion model.


More accurate pressure estimations are provided by the following pressure diffusion models:
 

See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing

Pressure diffusion models ] [ Linear Perrine multi-phase diffusion @model derivation ]


Reference



  1.  Perrine, R.L. 1956. Analysis of Pressure Buildup Curves. Drill. and Prod. Prac., 482. Dallas, Texas: API.

  2.  SPE-1235-G, Martin, J.C., Simplified Equations of Flow in Gas Drive Reservoirs and the Theoretical Foundation of Multiphase Pressure Buildup Analyses, 1959


 

  • No labels