Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Consider the Cartesian coordinates  in 3D space: 

LaTeX Math Inline
body--uriencoded--ℝ%5e3 \Big %7C_%7B \%7Bx, y, z \%7D %7D
 and its infinitesimal volumetric element: 
LaTeX Math Inline
body--uriencoded--\delta \Omega = \%7B (x, x+\delta), (y, y+\delta y), (z, z+\delta z) \%7D \in ℝ%5e3
 with volume 
LaTeX Math Inline
body\delta V = \delta x \, \delta y \, \delta z
 bounded by six faces: 
LaTeX Math Inline
body--uriencoded--\%7B (\delta \Sigma_x, \, \delta \Sigma_%7Bx+\delta x%7D), \, (\delta \Sigma_y, \, \delta \Sigma_%7By+\delta y%7D), \, (\delta \Sigma_z, \, \delta \Sigma_%7Bz+\delta z%7D) \%7D
 which have the same area along corresponding axisWe start with the general from of 
LaTeX Math Block Reference
anchorPZ
pageSingle-phase pressure diffusion @model
:

LaTeX Math Block
anchor

...

PZ
alignmentleft
\

...

phi 

...

\

...

cdot 

...

c_

...

t 

...

\

...

cdot 

...

\

...

partial_t p + \nabla  {\bf u}  
+ c \cdot ( {\bf u} \, \nabla p)
= \sum_k q_k(t) \cdot \delta

...

({\bf r}-{\bf r}_k)
LaTeX Math Block
anchor

...

uu
alignmentleft
{\

...

bf u} = 

...

- M 

...

\cdot ( \nabla p - \rho \, {\bf g})
LaTeX Math Block
anchor

...

qGamma
alignmentleft
\

...

int_{\Gamma} \, {\bf u} \,  d {\bf \Sigma} = q_\Gamma(t)

where

LaTeX Math Inline
body--uriencoded--p(t, %7B\bf r%7D)

reservoir pressure

LaTeX Math Inline
bodyt

time

LaTeX Math Inline
body--uriencoded--\rho(%7B\bf r%7D)

fluid density 

Consider the volumetric element 

LaTeX Math Inline
body\delta \Omega
 is filled with porous media with porosity 
LaTeX Math Inline
body\phi(x,y,z)
 saturated by fluid with density 
LaTeX Math Inline
body\rho(x,y,z)
.

...

LaTeX Math Inline
body--uriencoded--

...

%7B\bf r %7D

position vector

LaTeX Math Inline
body--uriencoded--\

...

phi(%7B\bf r%7D)

effective porosity 

...

LaTeX Math Inline
body

...

--uriencoded--%7B\bf r %7D_k

position vector of the

LaTeX Math Inline
body

...

LaTeX Math Block
anchor1
alignmentleft
\frac{dm}{dt} \Big|_{\delta \Sigma} = {\bf j} \, {\bf \delta A} 

where

k
-th source

LaTeX Math Inline
body--uriencoded--c_t(%7B\bf r%7D)

total compressibility 

LaTeX Math Inline
body\delta ( \bf r )

Dirac delta function

LaTeX Math Inline
body--uriencoded--M(%7B\bf

\delta A%7D = \delta A \cdot %7B\bf n%7Dvector area 

r%7D)

reservoir fluid mobility

LaTeX Math Inline
body--uriencoded--M(%7B\bf r%7D) = \frac%7Bk(%7B\bf

n%7Dnormal vector to  elementary area  

r%7D)%7D%7B\mu%7D

LaTeX Math Inline
body\

delta A

nabla

gradient operator

LaTeX Math Inline
body--uriencoded--k(%7B\bf

j%7D = \rho \cdot %7B\bf u%7Dmass flux vector 

r%7D)

formation permeability to a given fluid

LaTeX Math Inline
body--uriencoded--%7B \bf

u%7Dfluid flow velocity

...

g %7D

gravity vector

LaTeX Math Inline
body\

...

LaTeX Math Block
anchormdot
alignmentleft
\frac{dm}{dt} \Big|_{\delta \Omega} =  \sum_{\alpha} j_{\alpha}A_{\alpha} + \delta \dot m_q
LaTeX Math Block
anchormdot
alignmentleft
\frac{dm}{dt} \Big|_{\delta \Omega} =  
j_x|_{x}\cdot \delta A_{yz} - j_x|_{x+\delta x}\cdot \delta A_{yz} +j_y|_{y}\cdot \delta A_{xz} - j_y|_{y+\delta y}\cdot \delta A_{xz} +
j_z|_{z}\cdot \delta A_{xy} - j_z|_{z+\delta z}\cdot \delta A_{xy}  + \delta \dot m_q

where

...

LaTeX Math Inline
body\delta \dot m_q

...

the rate of the mass variation which happens inside the volumetric element 

LaTeX Math Inline
body\delta \Omega
   

Dividing the 

LaTeX Math Block Reference
anchormdot
by the volume 
LaTeX Math Inline
body\delta V
:

LaTeX Math Block
anchor1
alignmentleft
\frac{dm}{dt \, \delta V} \Big|_{\delta \Omega} =  \frac {\partial  (\rho \, \phi)}{\partial t} = \frac{j_x|_x - j_x|_{x+\delta x}}{\delta x} + \frac{j_y|_y - j_y|_{y+\delta y}}{\delta y} + \frac{j_z|_z - j_z|_{z+\delta z}}{\delta z} + \frac{\delta \dot m_q}{\delta V}

or in differential form:

LaTeX Math Block
anchor1
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} = - \nabla \, {\bf j} + \frac{\delta \dot m_q}{\delta V}
LaTeX Math Block
anchorprelast
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} + \nabla \, {\bf j} =  \frac{\delta \dot m_q}{\delta V} 

The mass rate generated/consumed by a finite number of well-reservoir contacts can be expressed as:

LaTeX Math Block
anchordot_m_1
alignmentleft
\frac{\delta \dot m_q}{\delta V} = \sum_k \rho_k \cdot q_k(t) \cdot \delta({\bf r}-{\bf r}_k)

where

...

LaTeX Math Inline
bodyq_k(t)

...

volumetric flowrate of the source/stock at the reservoir point 

LaTeX Math Inline
body--uriencoded--%7B\bf r%7D_k

...

LaTeX Math Inline
body--uriencoded--\rho_k (t) = \rho(p(t, %7B\rm r%7D_k))

...

fluid density at the reservoir point 

LaTeX Math Inline
body--uriencoded--%7B\bf r%7D_k

...

LaTeX Math Block Reference
anchordot_m_1

...

anchorE2YNK
alignmentleft

...

mu

dynamic viscosity of a given  fluid

LaTeX Math Inline
body--uriencoded--%7B \bf u %7D

fluid velocity under Darcy flow 

LaTeX Math Inline
bodyq_k(t)

sandface flowrates of the

LaTeX Math Inline
bodyk
-th source

LaTeX Math Inline
body\Gamma

reservoir boundary

LaTeX Math Inline
bodyq_\Gamma(t)

flow through the reservoir boundary

LaTeX Math Inline
body\Gamma
, which is aquifer or gas cap


Let's neglect the non-linear term 

LaTeX Math Inline
body--uriencoded--c \cdot ( %7B\bf u%7D \, \nabla p)
 for low compressibility fluid
LaTeX Math Inline
bodyc \sim 0
 which is equivalent to assumption of nearly constant fluid density:
LaTeX Math Inline
body\rho(p) = \rho = \rm const
.

Together with constant pore compressibility

LaTeX Math Inline
bodyc_\phi = \rm const
this will lead to constant total compressibility 
LaTeX Math Inline
bodyc_t = c_\phi + c \approx \rm const
.

Assuming that permeability and fluid viscosity do not depend on pressure

LaTeX Math Inline
bodyk(p) = k = \rm const
 and
LaTeX Math Inline
body\mu(p) = \mu = \rm const
 one arrives to the differential equation with constant coefficients

LaTeX Math Block
anchorPZ
alignmentleft
\phi \cdot c_t \cdot \partial_t p + \nabla  {\bf u}  
= \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)

...

LaTeX Math Block

...

anchor

...

uu
alignmentleft

...

{\bf 

...

u} = 

...

- M \cdot ( \

...

nabla p - \rho \, {\bf 

...

g}

...

)

...

LaTeX Math Inline
body--uriencoded--%7B\bf j%7D = \rho \cdot %7B\bf u%7D

...

LaTeX Math Block

...

anchor

...

qGamma
alignmentleft
\

...

int_{\

...

Gamma} 

...

\

...

, 

...

{\

...

bf 

...

u}

...

 \, 

...

 

...

d 

...

{\bf 

...

\Sigma}

...

 =

...

 

...

q_

...

\Gamma(t)


or

...

LaTeX Math Block
anchor

...

PZ1
alignmentleft

...

\phi

...

 

...

\

...

cdot c_t \cdot \

...

and

...

anchorgrad_term
alignmentleft

...

partial_t p + \

...

nabla  {\bf u}  = 0
LaTeX Math Block
anchoruu1
alignmentleft
{\bf u}

...

 = 

...

- M \cdot ( \nabla 

...

p - \rho \,

...

 

...

{\bf 

...

g})
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u}

...

 

...

\

...

,  

...

d {\bf 

...

\Sigma} 

...

where

...

LaTeX Math Inline
body--uriencoded--\displaystyle c_r = \frac%7B1%7D%7B\phi%7D \, \frac%7B\partial \phi%7D%7B\partial p%7D

...

LaTeX Math Inline
body--uriencoded--\displaystyle c = \frac%7B1%7D%7B\rho%7D \, \frac%7B\partial \rho%7D%7B\partial p%7D

...

LaTeX Math Inline
bodyc_t = c_r + c

...

Substituting the 

LaTeX Math Block Reference
anchordin_term
 and 
LaTeX Math Block Reference
anchorgrad_term
 in 
LaTeX Math Block Reference
anchorrho_dif
 and cancelling the fluid density 
LaTeX Math Inline
body\rho
 one arrives to:

...

= q_k(t)
LaTeX Math Block
anchorqGamma

...

alignmentleft

...

\int_{\Gamma} \, {\bf u} 

...

\, 

...

 

...

d {\bf 

...

\Sigma} 

...

=

...

 q_

...

\Gamma(t)


See also

...

Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model

...