We start with the general from of :

\phi \cdot c_t \cdot \partial_t p + \nabla  {\bf u}  
+ c \cdot ( {\bf u} \, \nabla p)
= \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
{\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
\int_{\Gamma} \, {\bf u} \,  d {\bf \Sigma} = q_\Gamma(t)

where

reservoir pressure

time

fluid density 

position vector

effective porosity 

position vector of the -th source

total compressibility 

Dirac delta function

gradient operator

formation permeability to a given fluid

gravity vector

dynamic viscosity of a given  fluid

fluid velocity under Darcy flow 

sandface flowrates of the -th source

reservoir boundary

flow through the reservoir boundary , which is  aquifer or gas cap


Let's neglect the non-linear term  for low compressibility fluid  which is equivalent to assumption of nearly constant fluid density: .

Together with constant pore compressibility this will lead to constant total compressibility .

Assuming that permeability and fluid viscosity do not depend on pressure  and  one arrives to the differential equation with constant coefficients

\phi \cdot c_t \cdot \partial_t p + \nabla  {\bf u}  
= \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
{\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
\int_{\Gamma} \, {\bf u} \,  d {\bf \Sigma} = q_\Gamma(t)


or
\phi \cdot c_t \cdot \partial_t p + \nabla  {\bf u}  = 0
{\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
\int_{\Sigma_k} \, {\bf u} \,  d {\bf \Sigma} = q_k(t)
\int_{\Gamma} \, {\bf u} \,  d {\bf \Sigma} = q_\Gamma(t)


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model