Synonym: Modified Black Oil fluid @model = MBO fluid @modelVolatile Oil fluid @model 


Specific case of a 3-phase fluid model based on three pseudo-components  :

water pseudo-component, which may include minerals  (assuming formation water and injection water composition is the same)

dead oil pseudo-component 

dry gas pseudo-component

existing in three possible phases :

water phase, consisting of Water component only

oil phase, consisting of dead Oil pseudo-component and dissolved dry Gas pseudo-componentt (called Solution Gas)

gas phase, consisting of dry Gas pseudo-component and vaporized dead Oil pseudo-component (called volatile oil)


The volumetric phase-balance equations is:

s_w + s_o + s_g =1

where

share of total fluid volume occupied by water phase

share of total fluid volume occupied by oil phase

share of total fluid volume occupied by gas phase


The accountable cross-phase exchanges are illustrated in the table below:







Modified Black Oil fluid @model  is widely used to model Volatile Oil Reservoir and Pipe Flow Simulations.


The relations  between in-situ (at given temperature and pressure) and STP masses, volumes, densities and compressibilities are given by the following equations (see Derivation):

V_O = \frac{V_o}{B_o} + R_v \,\frac{V_g}{B_g}
V_G = \frac{V_g}{B_g} + R_s \, \frac{V_o}{B_o}
V_W =  \frac{q_w}{B_w}
V_L =  V_O + V_W
V_o = \frac{B_o \cdot (V_O - R_v \, V_G)}{1- R_v \, R_s}
V_g = \frac{B_g \cdot (V_G - R_s \, V_O)}{1- R_v \, R_s}
V_w = B_w \cdot V_W
V_t = V_o + V_g + V_w
In-situ oil-cut:


s_o = V_o/V_t
In-situ gas-cut:


s_g = V_g/V_t
In-situ water-cut:


s_w = V_w/V_t
s_o+s_g+s_w = 1

Surface oil mass rate: 

m_O = \rho_O V_O
Surface gas mass rate: 


 m_G = \rho_G V_G
Surface gas mass rate: 


m_W = \rho_W V_W
Surface total fluid mass rate: 


m = m_O + m_G + m_W 
In-situ oil mass:


m_o = (\rho_O + \rho_G \cdot R_s) \cdot \frac{V_o}{B_o} 
In-situ gas mass:


m_g = (\rho_G + \rho_O \cdot R_v) \cdot \frac{V_g}{B_g}
In-situ water mass:


m_w = \rho_W \cdot V_w/B_w
In-situ total fluid mass:


m = m_o + m_g + m_w 
In-situ oil density:


\rho_o = \frac{\rho_O + \rho_G \cdot R_s}{B_o}
In-situ gas density:


\rho_g = \frac{\rho_G + \rho_O \cdot R_v}{B_g}
In-situ water density:


\rho_w = \frac{\rho_W}{B_w}
In-situ Total fluid density:
\rho_t = m/V_t = s_o \, \rho_o + s_g \, \rho_g + s_w \, \rho_w  

In-situ total fluid compressibility:

c = \rho_t^{-1} \cdot ( s_o \, \rho_o \, c_o + s_g \, \rho_g \, c_g + s_w \, \rho_w \, c_w )

where  are Dynamic fluid properties.

See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model

[ Volatile Oil ][ Volatile Oil Reservoir ][  PVT correlations ][ Oil correlations ][ Gas correlations ][ Water correlations ]

[ Dynamic fluid properties ]


 Modified Black Oil (old)