Page tree

Synonym: Modified Black Oil fluid @model = MBO fluid @modelVolatile Oil fluid @model 


Specific case of a 3-phase fluid model based on three pseudo-components   C = \{ W, O, G \}:

W

water pseudo-component, which may include minerals  (assuming formation water and injection water composition is the same)

O

dead oil pseudo-component 

G

dry gas pseudo-component

existing in three possible phases  \alpha = \{ w, o, g \}:

w

water phase, consisting of Water component only

o

oil phase, consisting of dead Oil pseudo-component and dissolved dry Gas pseudo-componentt (called Solution Gas)

g

gas phase, consisting of dry Gas pseudo-component and vaporized dead Oil pseudo-component (called volatile oil)


The volumetric phase-balance equations is:

(1) s_w + s_o + s_g =1

where

s_w = \frac{V_w}{V}

share of total fluid volume V occupied by water phase V_w

s_o = \frac{V_o}{V}

share of total fluid volume V occupied by oil phase V_o

s_g = \frac{V_g}{V}

share of total fluid volume V occupied by gas phase V_g


The accountable cross-phase exchanges are illustrated in the table below:


Modified Black Oil fluid @model  is widely used to model Volatile Oil Reservoir and Pipe Flow Simulations.


The relations  between in-situ (at given temperature and pressure) and STP masses, volumes, densities and compressibilities are given by the following equations (see Derivation):

(2) V_O = \frac{V_o}{B_o} + R_v \,\frac{V_g}{B_g}
(3) V_G = \frac{V_g}{B_g} + R_s \, \frac{V_o}{B_o}
(4) V_W = \frac{q_w}{B_w}
(5) V_L =  V_O + V_W
(6) V_o = \frac{B_o \cdot (V_O - R_v \, V_G)}{1- R_v \, R_s}
(7) V_g = \frac{B_g \cdot (V_G - R_s \, V_O)}{1- R_v \, R_s}
(8) V_w = B_w \cdot V_W
(9) V_t = V_o + V_g + V_w
In-situ oil-cut:


(10) s_o = V_o/V_t
In-situ gas-cut:


(11) s_g = V_g/V_t
In-situ water-cut:


(12) s_w = V_w/V_t
(13) s_o+s_g+s_w = 1

Surface oil mass rate: 

(14) m_O = \rho_O V_O
Surface gas mass rate: 


(15) m_G = \rho_G V_G
Surface gas mass rate: 


(16) m_W = \rho_W V_W
Surface total fluid mass rate: 


(17) m = m_O + m_G + m_W
In-situ oil mass:


(18) m_o = (\rho_O + \rho_G \cdot R_s) \cdot \frac{V_o}{B_o}
In-situ gas mass:


(19) m_g = (\rho_G + \rho_O \cdot R_v) \cdot \frac{V_g}{B_g}
In-situ water mass:


(20) m_w = \rho_W \cdot V_w/B_w
In-situ total fluid mass:


(21) m = m_o + m_g + m_w
In-situ oil density:


(22) \rho_o = \frac{\rho_O + \rho_G \cdot R_s}{B_o}
In-situ gas density:


(23) \rho_g = \frac{\rho_G + \rho_O \cdot R_v}{B_g}
In-situ water density:


(24) \rho_w = \frac{\rho_W}{B_w}
In-situ Total fluid density:
(25) \rho_t = m/V_t = s_o \, \rho_o + s_g \, \rho_g + s_w \, \rho_w

In-situ total fluid compressibility:

(26) c = \rho_t^{-1} \cdot ( s_o \, \rho_o \, c_o + s_g \, \rho_g \, c_g + s_w \, \rho_w \, c_w )

where  B_o, \, B_g, \, B_w, \, R_s, \, R_v are Dynamic fluid properties.

See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model

[ Volatile Oil ][ Volatile Oil Reservoir ][  PVT correlations ][ Oil correlations ][ Gas correlations ][ Water correlations ]

[ Dynamic fluid properties ]




  • No labels