Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 24 Next »

Synonym: Modified Black Oil fluid @model = MBO fluid @modelVolatile Oil fluid @model 


Specific case of a 3-phase fluid model based on three pseudo-components   C = \{ W, O, G \}:

W

water pseudo-component, which may include minerals  (assuming formation water and injection water composition is the same)

O

dead oil pseudo-component 

G

dry gas pseudo-component

existing in three possible phases  \alpha = \{ w, o, g \}:

w

water phase, consisting of Water component only

o

oil phase, consisting of dead Oil pseudo-component and dissolved dry Gas pseudo-componentt (called Solution Gas)

g

gas phase, consisting of dry Gas pseudo-component and vaporized dead Oil pseudo-component (called volatile oil)


The volumetric phase-balance equations is:

(1) s_w + s_o + s_g =1

where

s_w = \frac{V_w}{V}

share of total fluid volume V occupied by water phase V_w

s_o = \frac{V_o}{V}

share of total fluid volume V occupied by oil phase V_o

s_g = \frac{V_g}{V}

share of total fluid volume V occupied by gas phase V_g


The accountable cross-phase exchanges are illustrated in the table below:


Modified Black Oil fluid @model  is widely used to model Volatile Oil Reservoir and Pipe Flow Simulations.


The relations  between in-situ and surface (usually at SPE Standard Conditions (STP) ) masses, volumes, densities and compressibilities are given by following equations (see Derivation):

(2) q_O = \frac{q_o}{B_o} + R_v \,\frac{q_g}{B_g}
(3) q_G = \frac{q_g}{B_g} + R_s \, \frac{q_o}{B_o}
(4) q_W = \frac{q_w}{B_w}
(5) q_L = q_O + q_W
(6) q_o = \frac{B_o \cdot (q_O - R_v \, q_G)}{1- R_v \, R_s}
(7) q_g = \frac{B_g \cdot (q_G - R_s \, q_O)}{1- R_v \, R_s}
(8) q_w = B_w \cdot q_W
(9) q_t = q_o + q_g + q_w
In-situ oil-cut:


(10) s_o = q_o/q_t
In-situ gas-cut:


(11) s_g = q_g/q_t
In-situ water-cut:


(12) s_w = q_w/q_t
(13) s_o+s_g+s_w = 1

Surface oil mass rate: 

(14) \dot m_O = \rho_O \cdot q_O
Surface gas mass rate: 


(15) \dot m_G = \rho_G \cdot q_G
Surface gas mass rate: 


(16) \dot m_W = \rho_W \cdot q_W
Surface total fluid mass rate: 


(17) \dot m = \dot m_O + \dot m_G + \dot m_W
In-situ oil mass rate:


(18) \dot m_o = \rho_O \cdot q_o/B_o = \rho_O \cdot (q_O - R_v \, q_G))
In-situ gas mass rate:


(19) \dot m_g = \rho_G \cdot q_g/B_g = \rho_O \cdot (q_G - R_s \, q_O)
In-situ water mass rate:


(20) \dot m_w = \rho_W \cdot q_w/B_w
In-situ total fluid mass rate:


(21) \dot m = \dot m_o + \dot m_g + \dot m_w
In-situ oil density:


(22) \rho_o = \rho_O/B_o
In-situ gas density:


(23) \rho_g = \rho_G/B_g
In-situ water density:


(24) \rho_w = \rho_W/B_w
In-situ Total fluid density:
(25) \rho_t = \dot m/q_t = s_o \, \rho_o + s_g \, \rho_g + s_w \, \rho_w

Total fluid compressibility:

(26) c = \rho_t^{-1} \cdot ( s_o \, \rho_o \, c_o + s_g \, \rho_g \, c_g + s_w \, \rho_w \, c_w )


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model

[ Volatile Oil ][ Volatile Oil Reservoir ]




  • No labels