Page tree

Motivation



In many practical cases the Radial Flow Pressure Diffusion is evolving towards pressure stabilization and can be efficiently analyzed using the steady state flow model.


Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(r)

reservoir pressure

{p_i}

initial formation pressure

p_{wf}

well bottomhole pressure

\sigma

transmissibility, \sigma = \frac{k \, h}{\mu}



S

skin-factor

r_w

wellbore radius

r_e

drainage radius


k

absolute permeability

h

effective thickness

\mu

dynamic fluid viscosity

{\phi}

porosity



Physical Model


Radial fluid flowHomogenous reservoirFinite reservoir flow boundarySlightly compressible fluid flowConstant rateConstant skin

p(t, {\bf r}) \rightarrow p(r)

{\bf r} \in ℝ^2 = \{ x, y\}

M(r, p)=M =\rm const

\phi(r, p)=\phi =\rm const

h(r)=h =\rm const

c_r(r)=c_r =\rm const

r_w \leq r \leq r_e < \infty

c_t(r,p) = \rm const

q_t = \rm const

S = \rm const


Mathematical Model




(1) r_{wf} < r \leq r_e
(2) p(t, r ) = p(r) \Leftrightarrow \frac{\partial p}{\partial t} = 0
(3) \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} =0
(4) p(r_e ) = p_i
(5) \left[ r\frac{\partial p(r)}{\partial r} \right]_{r \rightarrow r_w} = \frac{q_t}{2 \pi \sigma}
(6) p_{wf}= p(r_w ) - S \cdot r_w \, \frac{\partial p}{\partial r} \Bigg|_{r=r_w}
(7) p(r) = p_i + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e} = p(r_w) + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_w} , \quad r_{wf} < r \leq r_e
(8) p_{wf} = p_i - \frac{q_t}{2 \pi \sigma} \, \bigg[ S + \ln \frac{r_e}{r_w} \bigg]


Applications



Equation   (7) shows how the basic diffusion model parameters impact the relation between drawdown \Delta p = p_i - p_{wf} and total sandface flowrate  q_t and plays important methodological role as they are used in many algorithms and express-methods of Pressure Testing



The Total Sandface Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

(9) J_t = \frac{q_t}{p_i - p_{wf}(t)} =\frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + S} = {\rm const}


The Field-average Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

(10) J_t = \frac{q_t}{p_r(t) - p_{wf}(t)} =\frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + 0.5 +S} = {\rm const}

See Also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow / Pressure diffusion / Pressure Diffusion @model / Radial Flow Pressure Diffusion @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ]



  • No labels