Page tree

Motivation



In many practical cases the Radial Flow Pressure Diffusion is evolving towards pressure stabilization and can be efficiently analyzed using the pseudo-steady state flow model.


Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(t,r)

reservoir pressure

{p_i}

initial formation pressure

p_{wf}(t)

well bottomhole pressure

\sigma

transmissibility, \sigma = \frac{k \, h}{\mu}



\chi

pressure diffusivity, \chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}



S

skin-factor

r_w

wellbore radius

r_e

drainage radius


k

absolute permeability

c_t

total compressibility, c_t = c_r + c

h

effective thickness

{c_r}

pore compressibility

\mu

dynamic fluid viscosity

c

fluid compressibility

{\phi}

porosity



Physical Model


Radial fluid flowHomogenous reservoirFinite reservoir flow boundarySlightly compressible fluid flowConstant rateConstant skin

p(t, {\bf r})

{\bf r} \in ℝ^2 = \{ x, y\}

M(r, p)=M =\rm const

\phi(r, p)=\phi =\rm const

h(r)=h =\rm const

c_r(r)=c_r =\rm const

r_w \leq r \leq r_e < \infty

c_t(r,p) = \rm const

q_t = \rm const

S = \rm const


Mathematical Model




(1) r_{wf} < r \leq r_e
(2) \frac{\partial p}{\partial t}= \chi \left[ \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right]
(3) \left[ \frac{\partial p}{\partial r} \right]_{r=r_e} = 0
(4) \left[ r\frac{\partial p(t,r)}{\partial r} \right]_{r = r_w} = \frac{q_t}{2 \pi \sigma}
(5) p_{wf}(t)= p(t, r_w) - S \cdot \left[ r \frac{\partial p(t,r)}{\partial r} \right]_{r=r_w} = p(t, r_w) - \frac{q_t}{2 \pi \sigma} S

Disclaimer

It is important to note that equations (1)(4) do not constitute a complete CVP as it does not specify the initial condition.

(6) p(t,r) = p_i - \frac{{\rm w \,} q_t }{V_e \, \phi \, c_t} \, t + \frac{{\rm w \,} q_t }{4\pi \sigma} \left[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} + 1 \right] , \quad r_{wf} < r \leq r_e, \quad {\rm w }= 1 - \frac{r_w^2}{r_e^2}
(7) p_e(t) = p_i - \frac{{\rm w \,} q_t}{V_e \phi c_t}t
(8) p_{wf}(t) = p_e(t) - \frac{q_t}{2 \pi \sigma} \, \left[ {\rm w\, } \ln \frac{r_e}{r_w} + 0.5 + S \right]


Approximations



(9) {\rm w} = 1 - \frac{r_w^2}{r_e^2} \approx 1
(10) p(t,r) \approx p_i - \frac{q_t}{V_e \, \phi \, c_t} \, t + \frac{q_t}{4\pi \sigma} \bigg[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} + 1 \bigg] , \quad r_{wf} < r \leq r_e
(11) p_{wf}(t) \approx p_e(t) - \frac{q_t}{2 \pi \sigma} \, \left[ \ln \frac{r_e}{r_w} + 0.5 + S \right]
(12) p_e(t) \approx p_i - \frac{q_t}{V_e \phi c_t}t

Applications



Equation   (6) shows how the basic diffusion model parameters impact the relation between drawdown  \Delta p = p_i - p_{wf} and total sandface flowrate  q_t and plays important methodological role as they are used in many algorithms and express-methods of Pressure Testing.



The Total Sandface Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

(13) J_t = \frac{q_t}{p_e(t) - p_{wf}(t)} =\frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + 0.5 +S} = {\rm const}

The Field-average Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

(14) J_t = \frac{q_t}{p_r(t) - p_{wf}(t)} =\frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + 0.75 +S} = {\rm const}


See Also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow / Pressure diffusion / Pressure Diffusion @model / Radial Flow Pressure Diffusion @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ]


  • No labels