Page tree


The most accurate prediction of 
Productivity Index is based on numerical reservoir flow simulations. 

Apart from this there are numerous proxy models covering popular categories of reservoir flow regimesdynamic reservoir properties and well-reservoir contacts.

One of the most popular proxy model is Dupuit PI @model which covers a very wide range of stabilised reservoir flow.


proxy model of Productivity Index for stabilised reservoir flow.

J = \frac{q}{p_{\rm frm} - p_{wf}} = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - \epsilon + S} = \frac{2 \pi \cdot \frac{k \, h}{\mu} }{ \ln \frac{r_e}{r_w} - \epsilon + S}

where

q

depending on application may mean a total sandface flowrate ( q_t) or a product of surface flowrate and FVF ( q = q_{\rm srf} B)

p_{wf}

p_{\rm frm}

depending on application may mean a drain-boundary formation pressure ( p_e) or drain-area formation pressure ( p_r)

\sigma

r_w

wellbore radius

r_e

distance to a drainarea boundary

S

total skin

\epsilon

a model parameter depending on Productivity Index definition and boundary type ( \epsilon =\{ 0, \, 0.5, \, 0.75 \}, see Table 1 below)


In case of homogeneous reservoir with only one vertical well producing the Dupuit PI @model is the exact analytical solution of Reservoir Flow Model (RFM).


Table 1. Variations to Dupuit PI @model depending  on the reservoir flow regime and the definition/application of Productivity Index.


Drain-area Productivity IndexJ_r = \frac{q}{p_r - p_{wf}}

Drain-boundary Productivity Index  J_e = \frac{q}{p_e - p_{wf}}


Steady State flow regime (SS)
J_r = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - 0.5 + S}
J_e = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} + S}

 
Pseudo-Steady State flow regime (PSS)
J_r = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - 0.75 + S}
J_e = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - 0.5 + S}



For the fractured vertical well the geometrical skin-factor  S_G is related to Fracture half-length  X_f as:

(1) S_G = -\ln \left(\frac{X_f}{2\, r_w} \right)



J = \frac{q}{p_{\rm frm} - p_{wf}} = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - \epsilon + S} = \frac{2 \pi M \cdot h}{ \ln \frac{r_e}{r_w} - \epsilon + S} = \frac{2 \pi k_{abs} \cdot h}{ \ln \frac{r_e}{r_w} - \epsilon + S} \cdot M_r = T \cdot M_r(s_w, s_g)


See Also


Petroleum Industry / Upstream / Production / Subsurface Production / Subsurface E&P Disciplines / Production Technology / Productivity Index

Dupuit PI @model ]



  • No labels