Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 9 Next »

We start with  (Derivation of Single-phase pressure diffusion @model:1) outside wellbore:

(1) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \rho \cdot \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(2) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

\Sigma_k

well-reservoir contact of the  k-th well

d {\bf \Sigma}

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

and use 

Error rendering macro 'mathblock-ref' : Math Block with anchor=din_term could not be found on page with id=100204820.
 to arrive at:

(3) \rho \, c_t \cdot \frac{\partial (p)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
(4) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

c_t


Let's assume Darcy flow and ignore gravity forces:

(5) {\bf u} = \frac{k}{\mu} \nabla \, p

so that diffusion equation becomes:

(6) \rho \, c_t \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{\rho}{\mu} \, \nabla \, p) = 0
(7) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf p} \, d {\bf A} = q_k(t)

Let's express the density via Z-factor:

(8) \rho = \frac{M}{RT} \, \frac{p}{Z(p)}

where

T

fluid temperature

M

molar mass of a fluid

R

gas constant

and assuming the fluid temperature  T does not change over time and space during the modelling period:

(9) \rho \, c_t \, \mu \cdot \frac{p}{\mu \, Z} \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{p}{\mu \, Z} \, \nabla \, p) = 0
(10) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf p} \, d {\bf A} = q_k(t)



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Pseudo-linear pressure diffusion @model



  • No labels