We start with  outside wellbore:


\frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \rho \cdot  \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)



\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)


where

well-reservoir contact of the -th well

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

and use  to arrive at:


\rho \, c_t  \cdot \frac{\partial (p)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0



\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)


where


Let's assume Darcy flow and ignore gravity forces:

 {\bf u} = \frac{k}{\mu} \nabla \, p

so that diffusion equation becomes:


\rho \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{\rho}{\mu} \, \nabla  \, p) = 0



\frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf p} \,  d {\bf A} = q_k(t)


Let's express the density via Z-factor:

\rho = \frac{M}{RT} \, \frac{p}{Z(p)}

where

fluid temperature

molar mass of a fluid

gas constant

and assuming the fluid temperature  does not change over time and space during the modelling period:


\rho \, c_t \, \mu  \cdot \frac{p}{\mu \, Z} \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{p}{\mu \, Z} \, \nabla  \, p) = 0



\frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf p} \,  d {\bf A} = q_k(t)




See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Pseudo-linear pressure diffusion @model