Page tree


We start with the reservoir flow continuity equation:

(1) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \sum_k \dot m_k(t) \cdot \delta({\bf r}-{\bf r}_k)

percolation model:

(2) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})

and the reservoir boundary flow condition:

(3) {\rm F}_{\Gamma}(p, {\bf u}) = 0

where

\Sigma_k

well-reservoir contact of the  k-th well

d {\bf \Sigma}

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

\dot m_k(t)

mass flowrate at  k-th well  \dot m_k(t) = \rho(p) \cdot q_k(t)

q_k(t)

sandface flowrate at  k-th well 

\rho(p)

fluid density as function of reservoir fluid pressure  p


Then use the following equality:

(4) d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} + \frac{d \rho }{\rho} \right) = \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) = \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

where

c_t = с_\phi+ c

to arrive at:

(5) \rho \, \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \sum_k \rho \, q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(6) {\rm F}_{\Gamma}(p, {\bf u}) = 0

The left-hand side of equation   (5) can be transformed in the following way:

(7) \nabla \, ( \rho \, {\bf u}) = \rho \, \nabla \, {\bf u} + (\nabla \rho, \, {\bf u}) = \rho \, \nabla \, {\bf u} + \frac{d\rho}{dp} \cdot (\nabla p, \, {\bf u}) = \rho \, \nabla \, {\bf u} + \rho \, c \cdot (\nabla p, \, {\bf u})

where  \displaystyle c(p) = \frac{1}{\rho} \frac{d\rho}{dp} is fluid compressibility.

By using the Dirac delta function property:  f(x) \cdot \delta(x-x_0) = f(x_0) \cdot \delta(x-x_0) the right-hand side of equation   (5) can be transformed in the following way:

(8) \sum_k \rho(p(t, {\bf r}))  \cdot q_k(t) \cdot \delta({\bf r}-{\bf r}_k) = \sum_k \rho(p(t, {\bf r}_k)) \cdot  q_k(t) \cdot \delta({\bf r}-{\bf r}_k) = \sum_k \rho(p(t, {\bf r})) \cdot  q_k(t)  \cdot \delta({\bf r}-{\bf r}_k) = \rho(p) \cdot \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)


Substituting (7) and (8) into (5) and reducing the density  \rho(p) one arrives to:

(9) \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla {\bf u} + c \cdot ( {\bf u} \, \nabla p) = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(10) {\rm F}_{\Gamma}(p, {\bf u}) = 0


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model





  • No labels