Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 30 Next »

Synonym: Volatile Oil fluid @model = Modified Black Oil (MBO) fluid @model


Specific case of a 3-phase fluid model based on three pseudo-components   C = \{ W, O, G \}:

W

water pseudo-component, which may include minerals  (assuming formation water and injection water composition is the same)

O

dead oil pseudo-component 

G

dry gas pseudo-component


existing in three possible 
phases  \alpha = \{ w, o, g \}:

w

water phase, consisting of Water component only

o

oil phase, consisting of dead Oil pseudo-component and dissolved dry Gas pseudo-componentt (called Solution Gas)

g

gas phase, consisting of dry Gas pseudo-component and vaporized dead Oil pseudo-component (called volatile oil)


The volumetric phase-balance equations is:

(1) s_w + s_o + s_g =1

where

s_w = \frac{V_w}{V}

share of total fluid volume V occupied by water phase V_w

s_o = \frac{V_o}{V}

share of total fluid volume V occupied by oil phase V_o

s_g = \frac{V_g}{V}

share of total fluid volume V occupied by gas phase V_g


The accountable cross-phase exchanges are illustrated in the table below:


Volatile oil fluid model is widely used to model Volatile Oil Reservoir and Pipe Flow Simulations.



The relations to STP flowrates  \{ q_O, \, q_G, \, q_W \} and mass flowrates \{ \dot m_O, \, \dot m_G, \, \dot m_W \} are given by following equations (see Derivation):

(2) q_O = \frac{q_o}{B_o} + \frac{R_v \, q_g}{B_g}
(3) q_G =\frac{q_g}{B_g} + \frac{R_s \, q_o}{B_o}
(4) q_W = \frac{q_w}{B_w}
(5) q_o = \frac{ B_o \cdot ( q_O - R_v \, q_G) }{1- R_v \, R_s}
(6) q_g = \frac{ B_g \cdot ( q_G - R_s \, q_O)}{1- R_v \, R_s}
(7) q_w = B_w \cdot q_W
(8) \rho_o = \frac{ \dot m_o}{q_o}= \frac{\rho_O + \rho_G \, R_s}{B_o}
(9) \rho_g = \frac{\dot m_g}{q_g}= \frac{\rho_G + \rho_O \, R_v}{B_g}

(10) \rho_w =\frac{\dot m_w}{q_w}= \frac{\rho_W}{B_w}
(11) \dot m_O = \rho_O \cdot q_O
(12) \dot m_G = \rho_G \cdot q_G
(13) \dot m_W = \rho_W \cdot q_W
(14) \dot m_o = \rho_o \cdot q_o = (\rho_O + \rho_G \, R_s) \cdot \frac{ q_o}{B_o}
(15) \dot m_g = \rho_g \cdot q_g = (\rho_G + \rho_O \, R_v) \cdot \frac{q_g }{B_g}
(16) \dot m_w = \rho_w \cdot q_w
(17) \dot m_o = \frac{(\rho_O + \rho_G \, R_s) \cdot ( q_O - R_v \, q_G) }{1- R_v \, R_s}
(18) \dot m_g = \frac{ (\rho_G + \rho_O \, R_v) \cdot ( q_O - R_v \, q_G) }{1- R_v \, R_s}
(19) \dot m_w = \rho_W \cdot \frac{q_w}{B_w} = \rho_W \cdot q_W
(20) \dot m = \dot m_o + \dot m_g + \dot m_w = \dot m_O + \dot m_G + \dot m_G
(21) q_t = q_o + q_g + q_w
(22) q_t = \frac{B_o - B_g \, R_s}{1-R_v \, R_s} \cdot q_O +\frac{B_g - B_o \, R_v}{1-R_v \, R_s} \cdot q_G + B_w \cdot q_W
(23) q_t = \frac{B_o - B_g \, R_s}{1-R_v \, R_s } \cdot \frac{\dot m_O }{\rho_O} +\frac{B_g - B_o \, R_v}{1-R_v \, R_s } \cdot \frac{\dot m_G }{\rho_G} + B_w\cdot \frac{\dot m_W}{\rho_W}
(24) \rho = \frac{\dot m}{q_t} = \frac{\dot m_O + \dot m_G + \dot m_G}{ \frac{B_o - B_g \, R_s}{1-R_v \, R_s } \cdot \frac{\dot m_O }{\rho_O} +\frac{B_g - B_o \, R_v}{1-R_v \, R_s } \cdot \frac{\dot m_G }{\rho_G} + B_w\cdot \frac{\dot m_W}{\rho_W} }

In-situ oil-cut:

(25) s_o = \frac{q_o}{q_t} = \frac{ B_o \, (q_O - R_v \, q_G)}{(B_o - B_g \, R_s) \, q_O + (Bg - B_o \, R_v) \, q_G + B_w \, (1- R_v \, R_s) \, q_W }

In-situ gas-cut:

(26) s_g = \frac{q_g}{q_t} = \frac{ B_g \, (q_G - R_s \, q_O)}{(B_o - B_g \, R_s) \, q_O + (Bg - B_o \, R_v) \, q_G + B_w \, (1- R_v \, R_s) \, q_W }

In-situ water-cut:

(27) s_w = \frac{q_w}{q_t} = \frac{ B_w \, (1- R_v \, R_s) \, q_W}{(B_o - B_g \, R_s) \, q_O + (Bg - B_o \, R_v) \, q_G + B_w \, (1- R_v \, R_s) \, q_W }

The total fluid density:

(28) \rho = s_o \, \rho_o + s_g \, \rho_g + s_w \, \rho_w

The total fluid compressibility:

(29) c = s_o \, c_o + s_g \, c_g + s_w \, c_w


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model

[ Volatile Oil ][ Volatile Oil Reservoir ]




  • No labels