Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 32 Next »

Motivation


In many practical cases the reservoir fluid flow created by well is getting aligned with a radial direction towards or away from well.

This type of reservoir fluid flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

The radial flow can be infinite acting or boundary dominated or transiting from one to another.


Although the actual reservoir fluid flow may not have an axial symmetry around the well-reservoir contact or around reservoir inhomogeneities (like boundary and faults and composite areas) but still  in many practical cases the long-term correlation between the flowrate and bottom-hole pressure response can be approximated by a radial flow pressure model


Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(r)

reservoir pressure

{p_i}

initial formation pressure

p_{wf}

well bottomhole pressure

\sigma

transmissibility, \sigma = \frac{k \, h}{\mu}



S

skin-factor

r_w

wellbore radius

r_e

drainage radius


k

absolute permeability

c_t

total compressibility, c_t = c_r + c

h

effective thickness

{c_r}

pore compressibility

\mu

dynamic fluid viscosity

c

fluid compressibility

{\phi}

porosity



Physical Model


Radial fluid flowHomogenous reservoirFinite reservoir flow boundarySlightly compressible fluid flowConstant rateConstant skin

p(t, {\bf r}) \rightarrow p(r)

{\bf r} \in ℝ^2 = \{ x, y\}

M(r, p)=M =\rm const

\phi(r, p)=\phi =\rm const

h(r)=h =\rm const

c_r(r)=c_r =\rm const

r_w \leq r \leq r_e < \infty

c_t(r,p) = \rm const

q_t = \rm const

S = \rm const


Mathematical Model




(1) r_{wf} < r \leq r_e
(2) p(t, r ) = p(r) \Leftrightarrow \frac{\partial p}{\partial t} = 0
(3) \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} =0
(4) p(r_e ) = p_i
(5) \left[ r\frac{\partial p(r )}{\partial r} \right]_{r \rightarrow r_w} = \frac{q_t}{2 \pi \sigma}
(6) p_{wf}= p(r_w ) - S \cdot r_w \, \frac{\partial p}{\partial r} \Bigg|_{r=r_w}
(7) p(r) = p_i + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e} = p(r_w) + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_w} , \quad r_{wf} < r \leq r_e
(8) p_{wf} = p_i - \frac{q_t}{2 \pi \sigma} \, \bigg[ S + \ln \frac{r_e}{r_w} \bigg]


Applications



Equation   (7) shows how the basic diffusion model parameters impact the relation between drawdown \Delta p = p_i - p_{wf} and total sandface flowrate  q_t and plays important methodological role as they are used in many algorithms and express-methods of Pressure Testing. It also called Dupuis



The Total Sandface Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

(9) J_t = \frac{q_t}{p_i - p_{wf}(t)} =\frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + S} = {\rm const}

See Also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ]

Pressure diffusion ] [ Pressure Diffusion @model ] [ Dupuit equation @model ]




  • No labels