Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 70 Next »

Motivation


In many practical cases the reservoir flow created by well is getting aligned with a radial direction towards or away from well.

This type of flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

Although the actual flow may not have an axial symmetry around the well-reservoir contact or reservoir inhomogeneities (like boundary and faults and composite areas) but still:


Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(t,r)

reservoir pressure

{p_i}

initial formation pressure

{p_{wf}(t)}

well bottomhole pressure

\sigma

transmissibility

\chi

pressure diffusivity


\sigma = \frac{k \, h}{\mu}

transmissibility

\mu

dynamic fluid viscosity

\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}

pressure diffusivity

c_t = c_r + c

total compressibility

k

absolute permeability

{c_r}

pore compressibility

{\phi}

porosity

c

fluid compressibility



Physical Model


Radial fluid flowHomogenous reservoirInfinite boundarySlightly compressible fluid flowConstant rateConstant Skin

p(t, r)

M(r, p)=M =\rm const

\phi(r, p)=\phi =\rm const

h(r)=h =\rm const

c_r(r)=c_r =\rm const

r \rightarrow \infty

r_w = 0

c_t(r,p) = \rm const

q_t = \rm const

S = \rm const


Mathematical Model




(1) \frac{\partial p}{\partial t} = \chi \, \left( \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right)
(2) p(t = 0, {\bf r}) = p_i
(3) p(t, r \rightarrow \infty ) = p_i
(4) \left[ r\frac{\partial p(t, r )}{\partial r} \right]_{r \rightarrow r_w} = \frac{q_t}{2 \pi \sigma}
(5) p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \, F \bigg( - \frac{r^2}{4 \chi t} \bigg)
(6) p_{wf}(t) = p_i + \frac{q_t}{4 \pi \sigma} \, \bigg[ - 2S + F \bigg( - \frac{r_w^2}{4 \chi t} \bigg) \bigg]

where F(\xi) a single-argument function describing the peculiarities of the diffusion model (well geometry, penetration geometry, formation inhomogeneities, hydraulic fractures, boundary conditions, etc.)


Applications



In simplest case of infinite homogeneous reservoir, produced by a vertical well the  F function has an exact analytical formula, given by exponential integral  F(z) = {\rm Ei}_1 (z) (see Line Source Solution (LSS) @model).



Pressure Testing – Infinite reservoir



Pressure Drop
(7) \delta p = p_i - p_{wf}(t) \sim \ln t + {\rm const}


Log derivative
(8) t \frac{d (\delta p)}{dt} \sim \rm const





Fig. 2. PTA Diagnostic plot for radial fluid flow



The Productivity Index for single-phase low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottom-hole pressure and the flow rate and can be expressed as:

(9) J(t) = \frac{q_t}{p_i - p_{wf}(t)} =\frac{ 4 \pi \sigma }{ 2S - F \bigg( - \frac{r_w^2}{4 \chi t} \bigg) }


Isobar equation for a constant-rate production:

(10) p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \, F \bigg( - \frac{r^2}{4 \chi t} \bigg) = {\rm const} \quad \rightarrow \quad \frac{r^2}{4 \chi t}= {\rm const}


Since the pressure disturbance at  t=0 moment was at well walls  r=r_w then the formula for constant-pressure front propagation becomes:

(11) r(t) = r_w + 2 \sqrt{\chi t}

This leads to estimation of isobar velocity:

(12) u_p(t) = \sqrt{\frac{\chi}{t}}



See also


Physics / Fluid Dynamics / Radial fluid flow

Line Source Solution (LSS) @model ]

Linear Flow Pressure Diffusion @model ]




  • No labels