Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 50 Next »


We start with the general from of  (Single-phase pressure diffusion @model:1):

(1) \phi \cdot c_t \cdot \partial_t p + \nabla {\bf u} + c \cdot ( {\bf u} \, \nabla p) = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(2) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
(3) \int_{\Gamma} \, {\bf u} \, d {\bf \Sigma} = q_\Gamma(t)

where

p(t, {\bf r})

reservoir pressure

t

time

\rho({\bf r},p)

fluid density 

{\bf r }

position vector

\phi({\bf r}, p)

effective porosity 

{\bf r }_k

position vector of the k-th source

c_t({\bf r},p)

total compressibility 

\delta ( \bf r )

Dirac delta function

M = k / \mu

\nabla

gradient operator

k

formation permeability to a given fluid

{ \bf g }

gravity vector

\mu

dynamic viscosity of a given  fluid

{ \bf u }

fluid velocity under Darcy flow 

q_k(t)

sandface flowrates of the k-th source

\Gamma

reservoir boundary

q_\Gamma(t)

flow through the reservoir boundary \Gamma, which is  aquifer or gas cap


Let's neglect the non-linear term  c \cdot ( {\bf u} \, \nabla p) for low compressibility fluid c \sim 0 which is equivalent to assumption of nearly constant fluid density: \rho(p) = \rho = \rm const.

Together with constant pore compressibility  c_\phi = \rm const this will lead to constant total compressibility  c_t = c_\phi + c \approx \rm const.

Assuming that permeability and fluid viscosity do not depend on pressure k(p) = k = \rm const and \mu(p) = \mu = \rm const one arrives to the differential equation with constant coefficients

(4) \phi \, c_t \cdot \partial_t p + \nabla {\bf u} = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(5) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})

or

(6) \phi \, c_t \cdot \partial_t p =   \nabla \left(  M \cdot ( \nabla p - \rho \, {\bf g})  \right) + \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model





  • No labels