Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


The general form of non-linear 
single-phase pressure diffusion @model with the finite number of wells is given by: 

LaTeX Math Block
anchorPZ

...

alignmentleft
\phi \cdot c_t \cdot \partial_t p 

...

+ 

...

\nabla  {\

...

bf 

...

u} 

...

 

...


+ c \cdot ( {\bf u} \, \nabla p)
= \sum_k q

...

_k(t) \cdot \delta({\bf r}-{\bf r}_k)

...

LaTeX Math Block
anchor

...

uu
alignmentleft
{\

...

bf 

...

u} = - M \cdot 

...

(

...

 \nabla 

...

p 

...

- \

...

rho \, {\bf g}

...

)
LaTeX Math Block
anchorqGamma
alignmentleft
{\rm F}_{\Gamma}(p, {\bf 

...

u}

...

)

...

titleDerivation

...

borderColorwheat
bgColormintcream
borderWidth7

Table. 1. Notations and Definitions

...

 = 0

where

LaTeX Math Inline
body--uriencoded--

...

LaTeX Math Inline
body\delta V = \delta x \delta y \delta z

...

объем элементарной ячейки

...

LaTeX Math Inline
body\rho

...

LaTeX Math Inline
body\phi

...

LaTeX Math Inline
bodyp

...

LaTeX Math Inline
bodym

...

LaTeX Math Inline
bodyk

...

LaTeX Math Inline
body\mu

...

LaTeX Math Inline
body\sigma

...

p(t, %7B\bf r%7D)

reservoir pressure

LaTeX Math Inline
bodyt

time

LaTeX Math Inline
body--uriencoded--\

...

LaTeX Math Inline
body--uriencoded--\displaystyle j_%7B\delta A%7D = \frac%7B\delta m%7D%7B\delta t \delta A%7D

...

LaTeX Math Inline
body--uriencoded--\vec %7Bu%7D

...

LaTeX Math Inline
body--uriencoded--\displaystyle c_%7Br%7D = \frac%7B1%7D%7B\Phi%7D\frac%7B\partial \Phi%7D%7B\partial p%7D

...

rho(%7B\bf r%7D,p)

fluid density 

...

LaTeX Math Inline
body--uriencoded--

...

%7B\bf r %7D

position vector

LaTeX Math Inline
body--uriencoded--

...

LaTeX Math Inline
body--uriencoded--ℝ%5e3 \Big %7C_%7B \%7Bx, y, z \%7D %7D

...

\phi(%7B\bf r%7D, p)

effective porosity 

LaTeX Math Inline
body--uriencoded--

...

%7B

...

\bf r %7D_k

LaTeX Math Inline
body

...

k
-th source

LaTeX Math Inline
body--uriencoded--

...

c_t(%7B\bf r%7D,p)

total compressibility 

LaTeX Math Inline
body\delta ( \bf r )

Dirac delta function

LaTeX Math Inline
bodyM = k / \mu

LaTeX Math Inline
body\nabla

gradient operator

LaTeX Math Inline
bodyk

formation permeability to a given fluid
LaTeX Math Block
anchor1
alignmentleft
\delta A(\delta \Sigma_x) = \delta A(\Sigma_{x+\delta x }) = \delta A_{yz} = \delta y \cdot \delta z
LaTeX Math Block
anchor1
alignmentleft
\delta A(\delta \Sigma_y) = \delta  A(\Sigma_{y+\delta y }) = \delta A_{xz} = \delta x \cdot \delta z
LaTeX Math Block
anchor1
alignmentleft
\delta A(\delta \Sigma_z) = \delta A(\Sigma_{z+\delta z }) = \delta A_{xy} = \delta x \cdot \delta y

Consider the volumetric element 

LaTeX Math Inline
body\delta \Omega
 is filled with porous media with porosity 
LaTeX Math Inline
body\phi(x,y,z)
 saturated by fluid with density 
LaTeX Math Inline
body\rho(x,y,z)
.

...

LaTeX Math Inline
body--uriencoded--

...

%7B \

...

bf g %7D

gravity vector

LaTeX Math Inline
body\mu

dynamic viscosity of a given  fluid

LaTeX Math Inline
body--uriencoded--

...

%7B \bf u %7D

fluid velocity under Darcy flow 

LaTeX Math Inline
body

...

q_k(t)

sandface flowrates of the

LaTeX Math Inline
body

...

LaTeX Math Block
anchor1
alignmentleft
\frac{dm}{dt} \Big|_{\delta \Sigma} = {\bf j} \, {\bf \delta A} 

where

...

LaTeX Math Inline
body--uriencoded--%7B\bf \delta A%7D = \delta A \cdot %7B\bf n%7D

k
-th well

...

LaTeX Math Inline
body

...

...

LaTeX Math Inline
body--uriencoded--%7B\

...

rm F%7D_%7B\Gamma%7D(p, %7B\bf u%7D)

...

LaTeX Math Inline
body\

...

LaTeX Math Block
anchormdot
alignmentleft
\frac{dm}{dt} \Big|_{\delta \Omega} =  \sum_{\alpha} j_{\alpha}A_{\alpha} + \delta \dot m_q
LaTeX Math Block
anchormdot
alignmentleft
\frac{dm}{dt} \Big|_{\delta \Omega} =  
j_x|_{x}\cdot \delta A_{yz} - j_x|_{x+\delta x}\cdot \delta A_{yz} +j_y|_{y}\cdot \delta A_{xz} - j_y|_{y+\delta y}\cdot \delta A_{xz} +
j_z|_{z}\cdot \delta A_{xy} - j_z|_{z+\delta z}\cdot \delta A_{xy}  + \delta \dot m_q

where

...

LaTeX Math Inline
body\delta \dot m_q

...

the rate of the mass variation which happens inside the volumetric element 

LaTeX Math Inline
body\delta \Omega
   

Gamma
, which is usually the aquifer or gas cap



Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

Derivation of Single-phase pressure diffusion @model



...

The alternative form is to write down equations 

LaTeX Math Block Reference
anchorPZ
 and 

LaTeX Math Block Reference
anchor

...

LaTeX Math Inline
body\delta V

uu
 in reservoir volume outside wellbore and match the solution to the fluid flux through the well-reservoir contact:

LaTeX Math Block
anchor

...

PZ1
alignmentleft
\

...

phi \

...

or in differential form:

LaTeX Math Block
anchor1
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} = - \nabla \cdot {\bf j} + \frac{\delta \dot m_q}{\delta V}
LaTeX Math Block
anchorprelast
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} + \nabla \cdot {\bf j} =  \frac{\delta \dot m_q}{\delta V} 

The mass rate generated/consumed inside the volumetric element 

LaTeX Math Inline
body\delta \Omega
 by a finite number of sources can be expressed as:

LaTeX Math Block
anchor1
alignmentleft
\frac{\delta \dot m_q}{\delta V} = \sum_k q({\bf r}) \cdot \delta({\bf r}-{\bf r}_k)

where

...

LaTeX Math Inline
body--uriencoded--q(%7B\bf r%7D)

...

cdot c_t \cdot \partial_t p + \nabla  {\bf u}  
+ c \cdot ( {\bf u} \, \nabla p)
= 0
LaTeX Math Block
anchoruu1
alignmentleft
{\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u} \,  d {\bf \Sigma} = q_k(t)
LaTeX Math Block
anchorqGamma
alignmentleft
{\rm F}_{\Gamma}(p, {\bf u}) = 0

where

which turns 

LaTeX Math Block Reference
anchorprelast
 into:

LaTeX Math Block
anchor1
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} + \nabla \cdot ({\bf j}) = \sum_k q({\bf r}) \cdot \delta({\bf r}-{\bf r}_k)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7Bdm%7D%7Bdt%7D = \sum_%7B\alpha%7D j_%7B\alpha%7DA_%7B\alpha%7D = j_x%7C_%7Bx%7D\cdot A_%7Byz%7D - j_x%7C_%7Bx+\delta x%7D\cdot A_%7Byz%7D + ...

...

Consider the mass flow rate balance  along the 

Рассмотрим приращение массы в элементарном кубе объема 

LaTeX Math Inline
body\delta V
. Предполагаем, что в самой ячейке нет источников, знак минус появляется за счет того, что нормали к противоположным граням кубика противонаправлены.

...

LaTeX Math Inline
body\Sigma_k

well-reservoir contact of the 

LaTeX Math Inline
bodyk
-th well

LaTeX Math Inline
body--uriencoded--

...

d %7B\

...

bf \Sigma%7D

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

LaTeX Math Inline
bodyq_k(t)

sandface flowrates at the 

LaTeX Math Inline
bodyk
-th well (could be injecting to or producing from the reservoir )


...

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D(\rho \Phi) = - \nabla \cdot \vec j

...

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D(\rho \Phi) + \nabla \cdot \vec j = 0

...

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D(\rho \Phi) + \nabla \cdot (\rho \vec u) = 0

...

Вспоминаем определение (4) поля 

LaTeX Math Inline
body--uriencoded--\vec%7Bj%7D
 

...

LaTeX Math Inline
body--uriencoded--\displaystyle \vec u = -\frac%7Bk%7D%7B\mu%7D \vec \nabla p

...

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D(\rho \Phi) - \nabla \cdot \left( \rho \frac%7Bk%7D%7B\mu%7D \vec \nabla p \right) = 0

...

Здесь и далее работаем в приближении

  1. процесс изотермический
  2. плотность флюида и пористость породы не зависят от времени явно

...

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D (\rho \Phi) = \frac%7B\partial%7D%7B\partial p%7D (\rho \Phi)_T \frac%7B\partial p%7D%7B\partial t%7D = (\dot %7B\Phi%7D \rho + \dot %7B\rho%7D \Phi)\frac%7B\partial p%7D%7B\partial t%7D = \rho \Phi (c_%7Br%7D + c_%7Bf%7D)\frac%7B\partial p%7D%7B\partial t%7D

...

Распишем временную производную в ур-нии (7)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \nabla \cdot \left( \rho \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7D p \right) =\frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7D\rho \cdot \vec%7B\nabla%7Dp + \rho \cdot \nabla \cdot \left( \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7Dp \right)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \nabla \cdot \left(\rho \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7D p \right) =\dot%7B\rho%7D\frac%7Bk%7D%7B\mu%7D (\vec%7B\nabla%7Dp)%5e2 + \rho \cdot \nabla \cdot \left( \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7Dp \right)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \rho \Phi c_%7Bt%7D \frac%7B\partial p%7D%7B\partial t%7D =\rho \left(\nabla \cdot \left( \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7Dp \right) + c_%7Bf%7D\frac%7Bk%7D%7B\mu%7D (\vec%7B\nabla%7Dp)%5e2 \right)

...

Перепишем ур-ние (7), используя конечные соотношения в (10) и (8), и определения для 

LaTeX Math Inline
body--uriencoded--c_%7Bt%7D
 (6) и 
LaTeX Math Inline
body--uriencoded--c_%7Bf%7D
 (7)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \Phi(p) c_%7Bt%7D(p) \frac%7B\partial p%7D%7B\partial t%7D =\nabla \cdot \left( \frac%7Bk(p)%7D%7B\mu (p)%7D \vec%7B\nabla%7Dp \right) + c_%7Bf%7D(p)\frac%7Bk(p)%7D%7B\mu (p)%7D (\vec%7B\nabla%7Dp)%5e2

...

Классическая запись уравнения диффузии в приближении изотермического процесса и независимости от времени плотности флюида и пористости породы.

Правая часть уравнения представляет собой сумму двух частей. Первая отвечает за пространственное распределение давления, вторая же содержит множителем сжимаемость флюида.

Physical models of pressure diffusion can be split into two categories: Newtonian and Rheological (non-Newtonian) based on the fluid stress model.

Mathematical models of pressure diffusion can be split into three categories: LinearPseudo-linearLinear and Non-linear

These models are built using Numerical, Analytical or Hybrid pressure diffusion solvers.

...


The simplest analytical solutions for pressure diffusion are given by 1DL Linear-Drive Solution (LDS) and 1DR Line Source Solution (LSS)The table below shows a list of popular well and reservoir pressure diffusion models.

...

Fractured vertical well

...

...

Multifrac horizontal well

...

See also

...

Pressure diffusionPhysics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model

[ Aquifer Drive Models ] [ Gas Cap Drive Models ]

[ Linear single-phase pressure diffusion @model ]