Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
LaTeX Math Block
anchorXSQUE
alignmentleft
\phi \cdot \partial_\tau \Psifrac{\partial \Psi}{\partial \tau}

 -   
 \nabla \cdot \left( k \cdot   \vec \nabla \Psi   \right) 
  = 0
LaTeX Math Block
anchorXSQUE
alignmentleft
-\frac{k}{\mu} \, \int_{\Sigma} \, \nabla p \, d {\bf A\Sigma} = q(t)


where

LaTeX Math Inline
body--uriencoded--p(t, %7B\bf r%7D)

reservoir pressure

LaTeX Math Inline
bodyt

time

LaTeX Math Inline
body--uriencoded--\phi(%7B\bf r%7D)

effective porosity 

LaTeX Math Inline
body--uriencoded--%7B\bf r %7D

position vector


LaTeX Math Inline
bodyc_t(p)
total compressibility 

LaTeX Math Inline
body\nabla


LaTeX Math Inline
bodyk
formation permeability to a given fluid

LaTeX Math Inline
body--uriencoded--d %7B\bf A%7D\Sigma%7D

normal surface element of well-reservoir contact


LaTeX Math Inline
body\mu(p)

dynamic viscosity of a given  fluid

LaTeX Math Inline
body--uriencoded--\displaystyle \Psi(p) =2 \, \int_0%5ep \frac%7Bp \, dp%7D%7B\mu(p) \, Z(p)%7D

Pseudo-Pressure


LaTeX Math Inline
bodyZ(p)
fluid compressibility factor

LaTeX Math Inline
body--uriencoded--\displaystyle \tau(t) = \int_0%5et \frac%7Bdt%7D%7B\mu(p) \, c_t(p)%7D

Pseudo-Time



LaTeX Math Inline
bodyq(t)

...

Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

Derivation of pseudo-linear pressure diffusion @model


In some practical cases the complex 

LaTeX Math Inline
bodyc_t \, \mu
 can be considered as constant in time which makes Pseudo-Time being proportional to freagular time: 

LaTeX Math Block
anchor1
alignmentleft
\tau(t) = \frac{t}{\mu \, c_t}

and one can write the diffusion equation as:

LaTeX Math Block
anchorRLS49
alignmentleft
\phi \, c_t \, \mu \cdot \frac{\partial \Psi}{\partial \tau} -   
 \nabla \cdot \left( k \cdot   \vec \nabla \Psi   \right) 
  = 0

which is a treat it as a differential equation with linear coefficients.


But during the early transition times the pressure drop is usually high and the complex 

LaTeX Math Inline
bodyc_t \, \mu
 can not be considered as constant in time which leads to distortion of pressure transient diagnostics at early times.

In this case one can use Pseudo-Time, calculated by means of the bottom-hole pressure

LaTeX Math Inline
body--uriencoded--p_%7BBHP%7D(t)
:

LaTeX Math Block
anchor8ORPU
alignmentleft
\tau(t) = \int_0^t \frac{dt}{\mu(p_{BHP}(t)) \, c_t(p_{BHP}(t))}

to correct early-time transient  behaviour.


In case of the ideal gas equation of state, the  Z-factor has a unit value:

LaTeX Math Inline
bodyZ(p) = 1
, viscosity does not depend on pressure 
LaTeX Math Inline
body\mu(p) = \mu
 and total compressibility is fully defined by fluid compressibility 
LaTeX Math Inline
body--uriencoded--\displaystyle c_t = c_r + c \sim \frac%7B1%7D%7Bp%7D
 which simplifies the expression for Pseudo-Pressure and Pseudo-Time as to:

LaTeX Math Block
anchorCAEN8
alignmentleft
\Psi(p) = \frac{p^2}{\mu}
LaTeX Math Block
anchor8ORPU
alignmentleft
\tau(t) = \frac{1}{\mu} \int_0^t p_{BHP}(t) dt


See also

...

Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model

...