Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Motivation


In many practical cases the reservoir fluid flow created by well is getting aligned with a radial direction towards or away from well.

This type of reservoir fluid flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

The radial flow can be infinite acting or boundary dominated or transiting from one to another.


Although the actual reservoir fluid flow may not have an axial symmetry around the well-reservoir contact or around reservoir inhomogeneities (like boundary and faults and composite areas) but still in many practical cases the reservoir flow tends to become radial after some time which makes a Radial Flow Pressure Diffusion @model (in its general form or in particular BVP solution) a popular diagnostic tool. 


Inputs & Outputs



InputsOutputs

LaTeX Math Inline
bodyq_t

total sandface rate

LaTeX Math Inline
bodyp(t,r)

reservoir pressure

LaTeX Math Inline
body{p_i}

initial formation pressure

LaTeX Math Inline
body{p_{wf}(t)}

well bottomhole pressure

LaTeX Math Inline
body\sigma

transmissibility,

LaTeX Math Inline
body\sigma = \frac{k \, h}{\mu}



LaTeX Math Inline
body\chi

pressure diffusivity,

LaTeX Math Inline
body\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}



LaTeX Math Inline
bodyS

skin-factor

LaTeX Math Inline
bodyr_w

wellbore radius

LaTeX Math Inline
bodyr_e

drainage radius (could be infinite)


Expand
titleDetailing


LaTeX Math Inline
bodyk

absolute permeability

LaTeX Math Inline
bodyc_t

total compressibility,

LaTeX Math Inline
bodyc_t = c_r + c

LaTeX Math Inline
bodyh

effective thickness

LaTeX Math Inline
body{c_r}

pore compressibility

LaTeX Math Inline
body\mu

dynamic fluid viscosity

LaTeX Math Inline
bodyc

fluid compressibility

LaTeX Math Inline
body{\phi}

porosity




Physical Model


Radial fluid flowHomogenous reservoirInfinite boundarySlightly compressible fluid flowConstant rateConstant skin

LaTeX Math Inline
bodyp(t, {\bf r}) \rightarrow p(t, r)

LaTeX Math Inline
body{\bf r} \in ℝ^2 = \{ x, y\}

LaTeX Math Inline
bodyM(r, p)=M =\rm const

LaTeX Math Inline
body\phi(r, p)=\phi =\rm const

LaTeX Math Inline
bodyh(r)=h =\rm const

LaTeX Math Inline
bodyc_r(r)=c_r =\rm const

LaTeX Math Inline
bodyr \rightarrow \infty

LaTeX Math Inline
bodyr_w = 0

LaTeX Math Inline
bodyc_t(r,p) = \rm const

LaTeX Math Inline
bodyq_t = \rm const

LaTeX Math Inline
bodyS = \rm const


Mathematical Model



Expand
titleDefinition



LaTeX Math Block
anchorP1
alignmentleft
r_{wf} < r \leq r_e



LaTeX Math Block
anchor52112
alignmentleft
\frac{\partial p}{\partial t}  = \chi \, \left( \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right)



LaTeX Math Block
anchor88AEG
alignmentleft
p(t = 0, {\bf r}) = p_i



LaTeX Math Block
anchor3MUX9
alignmentleft
p(t, r \rightarrow r_e ) = p_i)

or

LaTeX Math Block
anchor3MUX9
alignmentleft
\left[ \frac{\partial p}{\partial r} \right]_{r =r_e} = 0



LaTeX Math Block
anchorEM415
alignmentleft
\left[ r\frac{\partial p(t, r )}{\partial r} \right]_{r \rightarrow r_w} = \frac{q_t}{2 \pi \sigma}



LaTeX Math Block
anchorPE
alignmentleft
p_{wf}(t)= p(t,r_w) - S \cdot r_w \, \frac{\partial p}{\partial r} \Bigg|_{r=r_w}




Expand
titleSolution

There is no universal analytical solution to the above problem

LaTeX Math Block Reference
anchorP1
LaTeX Math Block Reference
anchorPE
but it can be always presented as below:


LaTeX Math Block
anchorp_F
alignmentleft
p(t,r) = p_i - \frac{q_t}{4 \pi \sigma} \,  F \bigg( - \frac{r^2}{4 \chi t} \bigg)



LaTeX Math Block
anchorpwf
alignmentleft
p_{wf}(t) = p_i - \frac{q_t}{4 \pi \sigma} \, \bigg[2S +   F \bigg( - \frac{r_w^2}{4 \chi t} \bigg) \bigg]


where

LaTeX Math Inline
bodyF(\xi)
a single-argument function describing the peculiarities of the diffusion model (well geometry, penetration geometry, formation inhomogeneities, hydraulic fractures, boundary conditions, etc.).

The fact that solution of equations

LaTeX Math Block Reference
anchorP1
LaTeX Math Block Reference
anchorPE
can be presented as
LaTeX Math Block Reference
anchorp_F
LaTeX Math Block Reference
anchorpwf
finds a lot of practical applications in Well Testing.



Expand
titleDerivation



Applications



Equations 

LaTeX Math Block Reference
anchorp_F
 and 
LaTeX Math Block Reference
anchorpwf
 show how the basic diffusion model parameters impact the pressure response while other diffusion parameters are encoded in 
LaTeX Math Inline
bodyF
 function and play important methodological role as they are used in many algorithms and express-methods of Pressure Testing.


Expand
titleLine Source Solution


In case of infinite homogeneous reservoir, produced by a infinitely small vertical well with no skin and no wellbore storage the 

LaTeX Math Inline
bodyF
 function has an exact analytical formula, given by exponential integral 
LaTeX Math Inline
bodyF(z) = - {\rm Ei} (z)
 (see Line Source Solution (LSS) @model).



Expand
titlePTA


PTA – Pressure Transient Analysis



Pressure Drop


LaTeX Math Block
anchor1EWTY
alignmentleft
\delta p = p_i - p_{wf}(t) \sim  \ln t + {\rm const}



Log derivative


LaTeX Math Block
anchorIBA4M
alignmentleft
t \frac{d (\delta p)}{dt}  \sim \rm const







Fig. 2. PTA Diagnostic plot for radial fluid flow




Expand
titleProductivity Index Analysis


The instantaneous Total Sandface Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressurebottomhole pressure and the flowrate and can be expressed as:

LaTeX Math Block
anchorJ
alignmentleft
J_t(t) = \frac{q_t}{p_i - p_{wf}(t)} =\frac{ 2 \pi \sigma }{ S - 0.5 \, F \left( - \frac{r_w^2}{4 \chi t} \right)  }



Expand
titleIsobar Propagation


Isobar equation for a constant-rate production:

LaTeX Math Block
anchorQ7VZX
alignmentleft
p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \,  F \bigg( - \frac{r^2}{4 \chi t} \bigg) = {\rm const} \quad \rightarrow \quad \frac{r^2}{4 \chi t}= {\rm const} 


Since the pressure disturbance at 

LaTeX Math Inline
bodyt=0
 moment was at well walls 
LaTeX Math Inline
bodyr=r_w
 then the formula for constant-pressure front propagation becomes:

LaTeX Math Block
anchorH09BI
alignmentleft
r(t) = r_w + 2 \sqrt{\chi t}

This leads to estimation of isobar velocity:

LaTeX Math Block
anchorNX4O7
alignmentleft
u_p(t) = \sqrt{\frac{\chi}{t}}



See Also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow / Pressure diffusion / Pressure Diffusion @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ]

Line Source Solution (LSS) @model ] [ Linear Flow Pressure Diffusion @model ]



Show If
groupeditors


Panel
bgColorpapayawhip


Expand
titleEditor

but this only works for the middle-times and long-times as early times are influenced by wellbore storage and non-linear effects of skin.


Expand
titleDefinition

Include Page
Line Source Solution (LSS)
Line Source Solution (LSS)





LaTeX Math Block
anchorA3E6X
alignmentleft
p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \,  {\rm Ei} \bigg( - \frac{r^2}{4 \chi t} \bigg)



Рассмотрим плоскопараллельный аксиально-симметричный однородный пласт постоянной толщины 

LaTeX Math Inline
bodyh
, с радиальной координатой 
LaTeX Math Inline
bodyr
 в перпендикулярной к оси скважины плоскости, который вскрыт бесконечно тонкой скважиной в точке 
LaTeX Math Inline
bodyr=0
 (где  – радиальная координата в перпендикулярной к оси скважине плоскости) и начальным пластовым давлением 
LaTeX Math Inline
bodyp_i
.



Пусть  в момент времени 

LaTeX Math Inline
bodyt = 0
 скважина запускается с дебитом 
LaTeX Math Inline
bodyq_t
 (в пересчете на пластовые условия).

Диффузия давления описывается решением уравнения однофазного радиального течения в бесконечном однородном пласте:

LaTeX Math Block
anchorp_dif
alignmentleft
\frac{\partial p}{\partial t} = \chi \,  \Delta p = \chi \, \frac{1}{r} \frac{\partial}{\partial r} \bigg( r \frac{\partial p}{\partial r} \bigg)

с начальным условием:

LaTeX Math Block
anchorN0ZUD
alignmentleft
p(t = 0, r) = p_i

и граничными условиями:

LaTeX Math Block
anchorBUZLH
alignmentleft
p(t, r \rightarrow \infty ) = p_i


LaTeX Math Block
anchorBoundary_q
alignmentleft
r \frac{\partial p(t, x )}{\partial r} \bigg|_{r \rightarrow 0} = \frac{q_t}{2  \pi \sigma}

где 

LaTeX Math Inline
body\sigma = \frac{k \, h}{\mu}
 – гидропроводность пласта, 
LaTeX Math Inline
body\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}
 – пьезопроводность пласта, 
LaTeX Math Inline
bodyk
 – проницаемость пласта, 
LaTeX Math Inline
body\phi
 – пористость пласта, 
LaTeX Math Inline
bodyc_t = c_r + c
 – сжимаемость пласта, 
LaTeX Math Inline
bodyc_r
 – сжимаемость порового коллектора, 
LaTeX Math Inline
bodyc
 – сжимаемость насыщающего пласт флюида, 
LaTeX Math Inline
body\mu
 – вязкость насыщающего пласт флюида.




При анализе отклика давления на самой скважине ( 

LaTeX Math Inline
bodyr = r_w
 ) после включения на достаточно больших временах, удовлетворяющих условию:

LaTeX Math Block
anchorAF8JH
alignmentleft
t \gg \frac{r_w^2}{4 \chi}

которые на практике наступают очень быстро, можно воспользоваться приближением 

LaTeX Math Inline
body{\rm Ei}(-x) \sim \ln (x) + \gamma \sim \ln (1.781 x)
, где 
LaTeX Math Inline
body\gamma = 0.5772 ...
 – постоянная Эйлера. 


Режим радиального течения к линейному источнику примет вид:

LaTeX Math Block
anchorOSWU0
alignmentleft
p(t,r_w) = p_i + \frac{q_t}{4 \pi \sigma} \,  \ln \bigg( 1.781 \, \frac{r_w^2}{4 \chi t} \bigg)


Отсюда следует, что уже вскоре после запуска скважины динамическая депрессия на пласт начинает логарифмически расти во времени:

LaTeX Math Block
anchor21SAA
alignmentleft
\delta p = p_i - p_{wf}(t) \sim { \rm const } + \frac{q_t}{4 \pi \sigma} \,  \ln t

а логарифмическая производная становится постоянной во времени:

LaTeX Math Block
anchorOFRU1
alignmentleft
t \frac{d (\delta p)}{dt}  \sim \frac{q_t}{4 \pi \sigma}


В лог-лог координатах лог-производная депрессии будет горизонтальной, что является характерным для радиальной фильтрации в бесконечном пласте.