Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 25 Next »


A proxy model of watercut in producing well with reservoir saturation  s=\{ s_w, \, s_o, \, s_g \} and reservoir pressure p_e:

(1) {\rm Y_{wm}} = \frac{1 - \epsilon_g}{1 - \frac{M_{ro}}{M_{rw}} \cdot \frac{B_w}{B_o} }, \quad \epsilon_g = \frac{A}{q_t} \cdot M_{ro} \cdot \left[ \frac{\partial P_c}{\partial r} + (\rho_w-\rho_o) \cdot g \cdot \sin \alpha \right]

where

B_w(p_e)

Water formation volume factor

B_o(p_e)

Oil formation volume factor

s

Reservoir saturation \{ s_w, \, s_o, \, s_g \}

M_{rw}(s)

Relative water mobility

M_{ro}(s)

Relative oil mobility

p_e

Current formation pressure

\rho_w

Water density

\rho_o

Oil density

g

Standard gravity constant

q_t

Total sandface flowrate 

A

Cross-sectional flow area

\alpha

Deviation of flow from horizontal plane

P_c(s)

capillary pressure




If saturation does not vary along the flow substantially then capillary effects are vanishing so that  \displaystyle \frac{\partial P_c}{\partial r} = \dot P_c \cdot \frac{\partial s_w}{\partial r} \approx 0.

If flow is close to horizontal then gravity effects are vanishing too and  \sin \alpha \approx 0.

In these cases   (1) simplifies to:

(2) {\rm Y_{wm}} = \frac{1}{1 - \frac{M_{ro}}{M_{rw}} \cdot \frac{B_w}{B_o} }



The models  (1) and  (2) can also be used in gross field production analysis assuming homogeneous reservoir saturation: 

(3) s_w(t) = s_{wi} + (1-s_{wi}-s_{or}) \cdot \rm RF(t)/E_S

See also


Water cut (Yw)


  • No labels