Page tree


A proxy model of watercut YW in producing well with reservoir saturation  s=\{ s_w, \, s_o, \, s_g \} and reservoir pressure p_e:

(1) {\rm Y_{Wm}} = \frac{1 - \epsilon_g}{1 + \frac{M_{ro}}{M_{rw}} \cdot \frac{B_w}{B_o} }
(2) \epsilon_g = \frac{A}{q_t} \cdot M_{ro} \cdot \left[ \frac{\partial P_c}{\partial r} + (\rho_w-\rho_o) \cdot g \cdot \sin \alpha \right]

where

B_w(p_e)

Water formation volume factor

B_o(p_e)

Oil formation volume factor

s

Reservoir saturation \{ s_w, \, s_o, \, s_g \}

M_{rw}(s)

Relative water mobility

M_{ro}(s)

Relative oil mobility

p_e

Current formation pressure

\rho_w

Water density

\rho_o

Oil density

g

Standard gravity constant

q_t

Total sandface flowrate 

A

Cross-sectional flow area

\alpha

Deviation of flow from horizontal plane

P_c(s)

capillary pressure




If capillary effects are not high  P_c \rightarrow 0 or saturation does not vary along the streamline substantially  \displaystyle \frac{\partial s_w}{\partial r} \rightarrow 0, then  \displaystyle \frac{\partial P_c}{\partial r} = \dot P_c \cdot \frac{\partial s_w}{\partial r} \approx 0.

If flow is close to horizontal  \sin \alpha \rightarrow 0 then gravity effects are vanishing too:  (\rho_w-\rho_o) \cdot g \cdot \sin \alpha \approx 0.

In these cases   (1) simplifies to:

(3) {\rm Y_{Wm}} = \frac{1}{1 + \frac{M_{ro}}{M_{rw}} \cdot \frac{B_w}{B_o} } = \frac{1}{1 + \frac{k_{ro}}{k_{rw}} \cdot \frac{\mu_w }{\mu_o } \cdot \frac{B_w}{B_o}}


The models  (1) and  (3) can also be used in production analysis assuming homogeneous reservoir water saturation s_w

(4) s_w(t) = s_{wi} + (1-s_{wi}) \cdot \rm E_{Dow}(t) = s_{wi} + (1-s_{wi}) \cdot \rm RFO(t)/E_S

where

\displaystyle {\rm RFO} = \frac{Q^{\uparrow}_O}{V_{\rm STOIIP}}


current oil recover factor

Q^{\uparrow}_O

cumulative oil production

V_{\rm STOIIP}

STOIIP

E_S

sweep efficiency

s_{wi}

initial water saturation

s_{orw}

residual oil saturation to water sweep

See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing (WT) / Flowrate Testing / Flowrate  / Production Water cut (Yw)

Watercut Diagnostics / Watercut Fractional Flow plot ] [ Watercut Correlation @model ]

WOR ] 







  • No labels