Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Block
anchorCK
alignmentleft
k = 1014.24 \cdot {\rm FZI}^2 \cdot \frac{(\phi_f -\phi_{f0})^3}{( 1 - \phi_f+\phi_{f0})^2}
LaTeX Math Block
anchorFZI
alignmentleft
{\rm FZI} = \frac{1}{\sqrt{F_S} \, S_{gV} \, \tau }

where

LaTeX Math Inline
body--uriencoded--%7B\rm FZI%7D

Flow Zone Indicator

LaTeX Math Inline
body--uriencoded--S_%7BgV%7D = \Sigma_e/V_\phi

surface pore area per unit pore volume

LaTeX Math Inline
body\Sigma_e

pore surface area

LaTeX Math Inline
body\phi_f

fracture porosity

LaTeX Math Inline
bodyF_S

pore shape factor

LaTeX Math Inline
bodyV_\phi

pore volume

LaTeX Math Inline
body--uriencoded--\phi_%7Bf0%7D

LaTeX Math Inline
body\tau

pore channel tortuosity


In case of proppant-filled fracture the Flow Zone Indicator can be approximated as:

...

For the fluid-filled fracture (

LaTeX Math Inline
body\phi_f = 1
)  the fracture permeability has a simple correlation: 

LaTeX Math Block
anchorVKSQD
alignmentleft
k_f =  \frac{w_f^2}{12}

and in pressure transient analysis behaves as the infinite-value permeability due to a high contrast with reservoir permeability. 


It can be formally interpreted as the extreme case of finite-conductivity fracture with the following trends the Flow Zone Indicator can be approximated as:

LaTeX Math Block
anchork_CZ
alignmentleft
{\rm FZI} =\rightarrow \frac{w_f}{2 \, \sqrt{F_S}}
LaTeX Math Block
anchork_CZ
alignmentleft
F_S \approxrightarrow 253.56 \, \frac{\phi_{f0}^2}{(1-\phi_{f0})^3}

which leads to simple correlation for fracture permeability:

...

anchorVKSQD
alignmentleft

...

}



See Also

...

Petroleum Industry / Upstream / Well / Well-Reservoir Contact (WRC)  / Hydraulic Fracture