Page tree


One of the models of Hydraulic Fracture Permeability is based on Cozeny-Karman permeability @model:

(1) k_f = 1014.24 \cdot {\rm FZI}^2 \cdot \frac{(\phi_f -\phi_{f0})^3}{( 1 - \phi_f+\phi_{f0})^2}
(2) {\rm FZI} = \frac{1}{\sqrt{F_S} \, S_{gV} \, \tau }

where

{\rm FZI}

Flow Zone Indicator

S_{gV} = \Sigma_e/V_\phi

surface pore area per unit pore volume

\Sigma_e

pore surface area

\phi_f

fracture porosity

F_S

pore shape factor

V_\phi

pore volume

\phi_{f0}

\tau

pore channel tortuosity


In case of proppant-filled fracture the Flow Zone Indicator can be approximated as:

(3) {\rm FZI} \approx 0.0037 \cdot \frac{d_p}{\tau_p }

where

d_p

proppant average grain size

\tau_p

fracture  pore channel tortuosity


For the fluid-filled fracture ( \phi_f = 1)  the fracture permeability has a simple correlation: 

(4) k_f = \frac{w_f^2}{12}


In Well Testing applications it normally behaves as the infinite-value fracture permeability due to a high contrast with typical formation permeability

It can be formally interpreted as the extreme case of finite-conductivity fracture with the following trends:

(5) {\rm FZI} \rightarrow \frac{w_f}{2 \, \sqrt{F_S}}
(6) F_S \rightarrow 253.56 \, \frac{\phi_{f0}^2}{(1-\phi_{f0})^3}

but this has little practial value.

See Also


Petroleum Industry / Upstream / Well / Well-Reservoir Contact (WRC)  / Hydraulic Fracture 

  • No labels