Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Excerpt Include
Aquifer Drive
Aquifer Drive
nopaneltrue


Inputs & Outputs

...


InputsOutputs

LaTeX Math Inline
bodyp(t)

field-average formation pressure at time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
bodyQ^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

LaTeX Math Inline
bodyp_i

initial formation pressure

LaTeX Math Inline
bodyq^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

LaTeX Math Inline
body

J_{AQ}aquifer Productivity Index

B

water influx constant

LaTeX Math Inline
body\chi

aquifer diffusivity

LaTeX Math Inline
body

\tauaquifer relaxation time

--uriencoded--A_e = \pi \, r_e%5e2

net pay area
Expand
titleDetailing
Detailing Inputs

LaTeX Math Inline
body

...

B = \frac{

...

\

...

theta}{\

...

pi} \

...

cdot A_e \cdot h_a \cdot \phi_a \cdot c_t

water influx constant

...

LaTeX Math Inline
body\

...

LaTeX Math Inline
bodyA_e

...

theta

central angle of net pay area  aquifer contact

LaTeX Math Inline
body

...

h_

...

...

effective thickness

LaTeX Math Inline
body\

...

...

LaTeX Math Inline
bodyc_t=c_

...

\phi +c_w

aquifer total compressibility

LaTeX Math Inline
bodyc_

...

...

LaTeX Math Inline
bodyV_{AQ} = A_e \cdot h_e \cdot \phi

...

LaTeX Math Inline
bodyh_e

...

LaTeX Math Inline
body\phi_e

...

aquifer porosity


Physical Model

...


Radial Composite Reservoir

Image Added

Transient flow
Computational approximation to van Everdingen-Hurst (VEH)









Fig. 1. Carter-Tracy aquifer drive schematic


Mathematical Model

...

LaTeX Math Block
anchorCT
alignmentleft
\frac{d Q^{\downarrow}_{AQ}}{dt_D}

Assumptions

Const Productivity Index Aquifer LaTeX Math Block
alignmentleft
J_{AQ}
 = \frac{
q_{AQ}}{p
 B \cdot (p_i - p(t_D)) - Q^{\downarrow}_{AQ} \cdot p'_D(t_D)
-
}{p_D(t_D)
} =
 - t_D \
rm constmathblock
cdot p'_D(t_D)}
LaTeX Math Block
anchor1
alignmentleft
p_
{AQ}(t) = p_i - \frac{Q_{AQ}(t)}{V_{AQ} \cdot c_t}

...

D= \frac{370.529 \, \sqrt{t_D} +137.528 \, t_D + 5.69549 \, t_D^{1.5}}
{328.834 +265.488 \, \sqrt{t_D} + 45.2157 \, t_D +  t_D^{1.5} }
LaTeX Math Block
anchor
CT
1
alignmentleft
q^{\downarrow}_{AQ}(t)=\frac{d Q^{\downarrow}_{AQ}}{dt} 



LaTeX Math Block
anchor1
alignmentleft
p'_D= \frac
{
B
716.441 + 46.7984 \
cdot (p_i - p(t)) - Q_{AQ} \cdot p'_D(t)}{p_D(t) - t \cdot p'_D(t)
, \sqrt{t_D} + 270.038 \, t_D + 71.0098 \, t_D^{1.5} }
{ 1296.86 \, \sqrt{t_D} + 1204.73 \, t_D + 618.618 \, t_D^{1.5} + 538.072 \, t_D^2 + 142.41 \, t_D^{2.5} }




LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)=
t_D= \frac{
d Q^{\downarrow}_{AQ}}{dt}
\pi \, \chi \, t}{A_e}
Expand
titleDerivation

Equation

LaTeX Math Block Reference
anchorCT
is not a solution of diffusion equation but an approximation of VEH model which does not involve convolution integral.

Computational Model

...

LaTeX Math Block
anchorCT
alignmentleft
Q^{\downarrow}_{AQ}(t_{D,n}) = Q^{\downarrow}_{AQ}(t_{D, \, n-1}) + (t_{D,n}-t_{D,\, n-1}) \cdot 

 \frac{ B \cdot (p_i - p(t_{D,n})) - Q^{\downarrow}_{AQ}(t_{D, \, n-1}) \cdot p'_D(t_{D,n})}{p_D(t_{D,n}) - t_{D,\, n-1} \cdot p'_D(t_{D, n})}


See Also

...

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive @modelModels

Reference

...

1. Carter, R.D. and Tracy, G.W. 1960. An Improved Method for Calculating Water Influx. Trans., AIME 219: 415.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)