Page tree

Motivation



The most accurate way to simulate Aquifer Expansion (or shrinkage) is full-field 3D Dynamic Flow Model where Aquifer Expansion is treated as one of the fluid phases and accounts of geological heterogeneities, gas fluid properties, relperm properties and heat exchange with surrounding rocks.

Unfortunately, in many practical cases the detailed information on the aquifer is not available which does not allow a proper modelling of aquifer expansion using a geological framework.

Besides many practical applications require only knowledge of cumulative water influx from aquifer under pressure depletion. 

This allows building an Aquifer Drive Models using analytical methods.


Inputs & Outputs



InputsOutputs

p(t)

field-average formation pressure at time moment t

Q^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

p_i

initial formation pressure

q^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

B

water influx constant

\chi

aquifer diffusivity

A_e = \pi \, r_e^2

net pay area
Detailing Inputs

B = \frac{\theta}{\pi} \cdot A_e \cdot h_a \cdot \phi_a \cdot c_t

water influx constant

\theta

central angle of net pay area  aquifer contact

h_a

aquifer effective thickness

\phi_a

aquifer porosity

c_t=c_\phi +c_w

aquifer total compressibility

c_\phi

aquifer pore compressibility 

c_w

aquifer water compressibility


Physical Model



Radial Composite Reservoir

Transient flow
Computational approximation to van Everdingen-Hurst (VEH)









Fig. 1. Carter-Tracy aquifer drive schematic


Mathematical Model


(1) \frac{d Q^{\downarrow}_{AQ}}{dt_D} = \frac{ B \cdot (p_i - p(t_D)) - Q^{\downarrow}_{AQ} \cdot p'_D(t_D)}{p_D(t_D) - t_D \cdot p'_D(t_D)}
(2) p_D= \frac{370.529 \, \sqrt{t_D} +137.528 \, t_D + 5.69549 \, t_D^{1.5}} {328.834 +265.488 \, \sqrt{t_D} + 45.2157 \, t_D + t_D^{1.5} }
(3) q^{\downarrow}_{AQ}(t)=\frac{d Q^{\downarrow}_{AQ}}{dt}


(4) p'_D= \frac {716.441 + 46.7984 \, \sqrt{t_D} + 270.038 \, t_D + 71.0098 \, t_D^{1.5} } { 1296.86 \, \sqrt{t_D} + 1204.73 \, t_D + 618.618 \, t_D^{1.5} + 538.072 \, t_D^2 + 142.41 \, t_D^{2.5} }


(5) t_D= \frac{\pi \, \chi \, t}{A_e}

Equation (1) is not a solution of diffusion equation but an approximation of VEH model which does not involve convolution integral.

Computational Model


(6) Q^{\downarrow}_{AQ}(t_{D,n}) = Q^{\downarrow}_{AQ}(t_{D, \, n-1}) + (t_{D,n}-t_{D,\, n-1}) \cdot \frac{ B \cdot (p_i - p(t_{D,n})) - Q^{\downarrow}_{AQ}(t_{D, \, n-1}) \cdot p'_D(t_{D,n})}{p_D(t_{D,n}) - t_{D,\, n-1} \cdot p'_D(t_{D, n})}


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

Reference


1. Carter, R.D. and Tracy, G.W. 1960. An Improved Method for Calculating Water Influx. Trans., AIME 219: 415.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)

  • No labels