Page tree

Motivation



The most accurate way to simulate Aquifer Expansion (or shrinkage) is full-field 3D Dynamic Flow Model where Aquifer Expansion is treated as one of the fluid phases and accounts of geological heterogeneities, gas fluid properties, relperm properties and heat exchange with surrounding rocks.

Unfortunately, in many practical cases the detailed information on the aquifer is not available which does not allow a proper modelling of aquifer expansion using a geological framework.

Besides many practical applications require only knowledge of cumulative water influx from aquifer under pressure depletion. 

This allows building an Aquifer Drive Models using analytical methods.


The Carter–Tracy (1960) model is a finite aquifer influx analytical model widely used in reservoir engineering to account for water influx in material-balance calculations.

It approximates the van Everdingen–Hurst (1949)  solution fore faster computation.


Physical Model



Radial Composite Reservoir

Transient flow
Computational approximation to van Everdingen-Hurst (VEH)









Fig. 1. Carter-Tracy aquifer drive schematic

Inputs



t

elapsed time



\mu

aquifer viscosity

h

aquifer thickness

k

aquifer permeability

r_e

inner radius (reservoir–aquifer interface)
\phi
aquifer porosity

r_a

outer radius of aquifer

c_\phi

aquifer pore compressibility 

p_i

initial formation pressure
c_w
aquifer water compressibility

p(t)

field-average formation pressure at time moment t

Outputs



Q^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer at time t, also denoted as W_e(t)

q_{AQ}^{\downarrow}(t)=\frac{Q^{\downarrow}_{AQ}(t)}{dt}

Midputs



A_e = \pi \, r_e^2

c_t=c_\phi +c_w

B = \frac{\theta}{\pi} \cdot A_e \cdot h \cdot \phi \cdot c_t

\chi = \frac{ k }{\phi \, \mu \, c_t }

aquifer diffusivity

t_D = \frac{\pi \, \chi \, t}{A_e} = \frac{ k \, t}{\phi \, \mu \, c_t \, r_e^2}

dimensionless time

r_D=r_a/r_e

dimensionless radius of aquifer

F(t_D, r_D)

dimensionless water influx function (solution of Carter–Tracy PDE)


Mathematical Model



(1) Q^{\downarrow}_{AQ}(t) = B \cdot \big( p_i- p(t) \big) \cdot F(t_D, r_D)
(2) p_D(t_D)= \sum_{n=1}^\infty\frac{2 \, \cdot \left[ 1- \exp(-\alpha_n^2 \, t_D) \right]}{\alpha_n^2 \, J^2_1(\alpha_n)}
(3) F(t_D,r_D)=\frac{p_D(t_D)}{\ln(r_D)}

where

J_1
first-order Bessel function
\alpha_n

roots of the zero-order Bessel function  J_0(\alpha_n \, r_D)=0


Computational Model



(4) p_D(t_D)\approx \frac{a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + a_5 z^5 + a_6 z^6 + a_7 z^7 + a_8 z^8}{1 + b_1 z + b_2 z^2 + b_3 z^3 + b_4 z^4 + b_5 z^5 + b_6 z^6 + b_7 z^7 + b_8 z^8}


z=\frac{\sqrt{t_D​}}{100}​​

where

a0 = 9.61160410×10−5
a1 = 1.10150583×102
a2 = 3.69104053×103
a3 = 1.12033686×104
a4 = −3.14537222×103
a5 = 1.82023227×103
a6 = −1.36968356×103
a7 = −6.36974453×101
a8 = 8.99546667×102


b
1
=
7.55537131×101

b2 = 1.15895503×103
b3 = 1.49728560×103
b4 = 1.15730915×103
b5 = −5.01191508×103
b6 = 7.16669376×103
b7 = −1.40526116×103
b8 = −4.66063041×103


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

[ Material Balance Analysis (MatBal) / Material Balance Pressure @model

Reference


1. Carter, R.D. and Tracy, G.W. 1960. An Improved Method for Calculating Water Influx. Trans., AIME 219: 415.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)



  • No labels