Page tree



(see SPT survey)


When flow rate is being intentionally varied in harmonic cycles with sandface amplitude  q_0 and cycling frequency  \omega = \frac{2 \, \pi}{T}:

(1) q(t) = q_0 \, \sin ( \omega \, t )

then bottom-hole pressure will follow the same variation pattern:

(2) p_{wf}(t) = p_0 \, \sin ( \omega \, [ t - t_{\Delta} ] )

with a bottom-hole pressure amplitude  p_0 and the time delay  t_{\Delta}

It takes some time (3-5 cycles  t \geq 3 \, T) for pressure to develop a stabilized response to rate variations.


The pressure delay   t_{\Delta} and associated dimensionless phase shift  \Delta = \omega \, t_{\Delta} represent the inertia effects from the adjoined reservoir and characterized by formation pressure diffusivity:

(3) \chi = \Big < \frac{k}{\mu} \Big > \frac{1}{\phi \, c_t}

The diffusion nature of pressure dictates that amplitude of pressure variation is proportional to amplitude of sandface flowerate variation and the ratio  \frac{p_0}{q_0} is related to formation transmissibility:

(4) \sigma = \Big < \frac{k}{\mu} \Big > \, h

The exact solution of differential diffusion equation for vertical well with negligible well storage and infinite boundary homogeneous reservoir can be represented by a system of non-linear algebraic equations, relating field-measured parameters  \big\{ \frac{q_0}{p_0}, \, t_{\Delta} \big\} to formation properties  \{ \sigma, \, \chi \}:

(5) X =r_w \, \sqrt{ \frac{\omega}{\chi} }
(6) \Delta = \omega \, t_{\Delta} = \frac{\pi}{4} - arctg{ \frac{Ker_1 X \cdot Kei \, X - Ker_1 X \cdot Kei \, X }{Ker_1 X \cdot Kei \, X +Ker_1 X \cdot Kei \, X } }
(7) \sigma =\frac{1}{2 \pi} \, \frac{q_0}{p_0} \, \sqrt{ \frac{Ker^2 X + Kei^2 X}{Ker_1^2 X + Kei_1^2 X} }

The above equations assume that diffusivity  \chi and dimensionless radius  X are found from  (5) –  (6) and then  X is substituted to  (7) to calculate transmissibility  \sigma.


In case of a low frequency pulsations:

(8) \omega \ll 0.00225 \, \frac{ \chi }{ r_w^2} \quad \Longleftrightarrow \quad X \ll 0.15

the equations  (5) –  (7) can be explicitly resolved in terms of transmissibility and diffusivity:

(9) \chi = 0.25 \, \omega \, \gamma^2 \, r_w^2 \, \exp \frac{\pi}{2 \, {\rm tg} \Delta }
(10) \sigma = \frac{q_0}{8 \, p_0 \, \sin \Delta}

where  \Delta = \omega \, t_{\Delta}.


The above analytical approach (either  (5) –  (7) or   (9) –  (10)) is rarely helpful in practise. 

The field operations are very finnicky and difficult to follow the pre-desgined sequence of clean harmonic pulsations.

As result, the flowrate variation becomes a complex sum of harmonics:

(11) q(t) = q_0 + \sum_{n=0}^\infty q_n \, \sin ( \omega_n \, t )

and the pressure response becomes complex as well: 

(12) p_{wf}(t) = p_0 + \sum_{n=0}^\infty p_n \, \sin ( \omega_n \, [ t - t_{\Delta_n} ] )  

The use of analytical formulas requires fourier transformation to identify the key harmonics from the raw data with a manual control from analyst and a certain amount of subjectivism on which harmonics to pick up for calculating the transmissibility and diffusivity.
 

Once the harmonics are identified one need to search for the \{ \sigma, \, \chi \} best fit to a complex system of non-linear algebraic equations:

(13) X_n =r_w \, \sqrt{ \frac{\omega_n}{\chi} }
(14) \Delta_n = \omega_n \, t_{\Delta} = \frac{\pi}{4} - arctg{ \frac{Ker_1 X_n \cdot Kei \, X_n - Ker_1 X_n \cdot Kei \, X_n }{Ker_1 X_n \cdot Kei \, X_n +Ker_1 X_n \cdot Kei \, X_n } }
(15) \sigma =\frac{1}{2 \pi} \, \frac{q_n}{p_n} \, \sqrt{ \frac{Ker^2 X_n + Kei^2 X_n}{Ker_1^2 X_n + Kei_1^2 X_n} }


In practice, the most efficient methodology to interpret the SPT data is via fitting numerical model to the raw pressure-rate data.

Still, formulas  (9) and (10) play important academic role and provide fast track estimations in SPT engineering.

  • No labels