Page tree


Fracture half-length

(1) X_f = \frac{Q}{2 \, w_f \, h_f}


Average Fracture width

(2) w_f = \frac{2 \pi \, p_{\rm net} \, h_f}{5 \, E'}


Net pressure at the wellbore

(3) p_{\rm net} = \left( \frac{20}{\pi^2} \cdot \frac{E'^4 \, q \, Q \, \mu}{h_f^6} \right)^{1/5}

where

t

fracture fluid injection time

q

fracture fluid injection rate

Q(t) = q \cdot t

cumulative fracture fluid injection over time  t

h_f

fracture height

E' = E \, / \, (1-\nu^2)

plane stress

E

Young modulus

\nu

Poisson's ratio

\mu

fracture  fluid viscosity




Fracture half-length

(4) X_f = 0.524 \, \left( \frac{q^3 E'}{\mu \, h_f^4} \right)^{1/5} \, t^{4/5} = 0.524 \, \left( \frac{E'}{\mu \, h_f^4} \frac{Q^4}{q}\right)^{1/5} = 0.8 \cdot \frac{E' \, Q}{p_{\rm net} \, h_f^2} = \frac{Q}{w_f \, h_f}


Fracture width at wellbore

(5) w_{f0} = 3.04 \, \left( \frac{q^2 \mu}{E' \, h_f} \right)^{1/5} \, t^{1/5}= 3.04 \, \left( \frac{q \, Q \mu}{E' \, h_f} \right)^{1/5} = \frac{2 \, p_{\rm net} \, h_f}{E'}


Average Fracture width

(6) w_f = \frac{\pi}{5} \, w_{f0} = \frac{2 \pi \, p_{\rm net} \, h_f}{5 \, E'}


Net pressure at the wellbore

(7) p_{\rm net} = 1.524 \, \left( \frac{E'^4 \, q^2 \, \mu}{h_f^6} \right)^{1/5} \, t^{1/5} = 1.524 \, \left( \frac{E'^4 \, q \, Q \, \mu}{h_f^6} \right)^{1/5}

where

t = Q(t)/q

injection time

q

injection rate

Q(t)

cumulative injection over time  t

h_f

fracture height

E' =\frac{E}{1-\nu^2}

plain stress

E

Young modulus

\nu

Poisson ratio

\mu

fluid viscosity



See Also


Petroleum Industry / Upstream / Well / Well-Reservoir Contact (WRC) / Hydraulic fracture / Hydraulic Fracture @model

KGD Hydraulic Fracture @model ]


Reference


Perkins, Kern and Nordgren




  • No labels