Page tree

Motivation



The most accurate way to simulate Aquifer Expansion (or shrinkage) is full-field 3D Dynamic Flow Model where Aquifer Expansion is treated as one of the fluid phases and accounts of geological heterogeneities, gas fluid properties, relperm properties and heat exchange with surrounding rocks.

Unfortunately, in many practical cases the detailed information on the aquifer is not available which does not allow a proper modelling of aquifer expansion using a geological framework.

Besides many practical applications require only knowledge of cumulative water influx from aquifer under pressure depletion. 

This allows building an Aquifer Drive Models using analytical methods.


Inputs & Outputs



InputsOutputs

p(t)

field-average formation pressure at time moment t

Q^{\downarrow}_{AQ}(t)

cumulative subsurface water influx from aquifer

p_i

initial formation pressure

q^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

subsurface water flowrate from aquifer

J_{AQ}

aquifer Productivity Index

\displaystyle \tau = \frac{c_t \, V_\phi}{J_{AQ}}

aquifer relaxation time



Detailing Inputs

\displaystyle J_{AQ} = \frac{\theta}{2\pi} \cdot \frac{2 \pi \sigma}{\ln \frac{A_{AQ}}{A_e}+0.75}


aquifer Productivity Index

\theta

central angle of net pay areaaquifer contact

\sigma

aquifer transmissibility

A_e

net pay area

A_{AQ}

aquifer area

\displaystyle \tau = \frac{V_{AQ} \, c_t}{J_{AQ}}

aquifer relaxation time

c_t=c_r +c_w

aquifer total compressibility

c_r

aquifer pore compressibility 

c_w

aquifer water compressibility

V_{AQ} = A_e \cdot h \cdot \phi

aquifer volume 

h

aquifer effective thickness

\phi

aquifer porosity


Physical Model




Radial Composite Reservoir

Const Productivity Index Aquifer
J_{AQ} = \frac{q_{AQ}}{p_{AQ}(t)-p(t)} = \rm const
Pseudo Steady State Flow
p_{AQ}(t) = p_i - \frac{Q_{AQ}(t)}{V_{AQ} \cdot c_t}




Fig. 1. Fetkovich aquifer drive schematic



Mathematical Model


(1) \tau \cdot \frac{d Q^{\downarrow}_{AQ}}{dt} + Q^{\downarrow}_{AQ} = с_t \, V_\phi \cdot \left[ p_i - p(t) \right]
(2) q^{\downarrow}_{AQ}(t)=\frac{d Q^{\downarrow}_{AQ}}{dt}

 which can be explicitly integrated:

(3) Q^{\downarrow}_{AQ}(t) = J_{AQ} \, \exp \left( -\frac{t}{\tau} \right) \, \int_0^t \big[ p_i - p(\xi) \big] \, \exp \left( \frac{\xi}{\tau} \right) \, d \xi



Assumption #1 = Const Productivity Index Aquifer:

q_{AQ} = \frac{d Q_{AQ}}{dt} = J_{AQ} \cdot ( p_{AQ}(t) - p(t))


Assumption #2 = Pseudo Steady State Flow:

p_{AQ}(t) = p_i - \frac{Q_{AQ}}{c_t \, V_\phi}


Eliminating p_{AQ}(t) one arrives to (1).


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

Reference


 1.   Fetkovich, M.J. 1971. A Simplified Approach to Water Influx Calculations—Finite Aquifer Systems. J Pet Technol 23 (7): 814–28. SPE-2603-PAhttp://dx.doi.org/10.2118/2603-PA

  • No labels