Page tree

Modelling facility for field-average formation pressure  p(t) at any time moment  t as response to production flowrates history:

(1) A_e \, h_e \int_{p_i}^p \phi_e(p) \, c_t(p) \, dp = \Delta Q (t) = Q^{\downarrow}_t(t) - Q^{\uparrow}_t(t) + Q^{\downarrow}_{GC}(t) + Q^{\downarrow}_{AQ}(t)

where

p_i = p(0)

\Delta Q (t)

A_e

Q^{\uparrow}_t(t)

full-field cumulative offtakes by the time moment t

h_e

Q^{\downarrow}_t(t)

full-field cumulative intakes by the time moment t

\phi_e(p)

effective porosity as function of formation pressure  p(t) 

Q^{\downarrow}_{GC}(t)

cumulative gas influx from Gas Cap Expansion

c_t(p)


total compressibility as function of formation pressure  p(t)

Q^{\downarrow}_{AQ}(t)

cumulative water influx from Aquifer Expansion



The MatBal equation  (1)  is often complemented by constant PI  model of Bottom-Hole Pressure ( p^{\uparrow}_{wf}(t) for producers and  p^{\downarrow}_{wf}(t) for injectors):

(2) p^{\uparrow}_{wf, k}(t) = p(t) - {J^{\uparrow}_k}^{-1} \cdot \frac{dQ^{\uparrow}_k}{dt}
(3) p^{\downarrow}_{wf, \, j}(t) = p(t) - {J^{\downarrow}_j}^{-1} \cdot \frac{dQ^{\downarrow}_j}{dt}
wherewhere

p^{\uparrow}_{wf, \, k}(t)

BHP in k-th producer

p^{\downarrow}_{wf, \, j}(t)

BHP in j-th injector

Q^{\uparrow}_k(t)

cumulative offtakes from k-th producer by the time moment t

Q^{\downarrow}_j(t)

cumulative intakes to j-th injector by the time moment t

J^{\uparrow}_k

productivity index of k-th producer

J^{\downarrow}_j

injectivity Index of j-th injector



In practice there is no way to measure the external influx  Q^{\downarrow}_{GC}(t) and  Q^{\downarrow}_{AQ}(t) so that one need to model them and calibrate model parameters to fit available data on production flowrates history and formation pressure data records. 

There is a list of various analytical Aquifer Drive and  Gas Cap Drive models which are normally related to pressure dynamics p(t):

Gas Cap Drive @model Aquifer Drive @model
(4) Q^{\downarrow}_{GC}(t) = Q^{\downarrow}_{GC}(p(t))
(5) Q^{\downarrow}_{AQ}(t) = Q^{\downarrow}_{AQ}(p(t))

which closes equation  (1) for the pressure  p(t).

Variations



In some specific cases equation  (1) can be explicitly integrated:

Low pressure dry gas

\{ \phi_e = {\rm const}, \ c_t = {\rm const} \}

c_t = c_r + \frac{1}{p} \sim \frac{1}{p}

(6) p(t) = p_i + \frac{\Delta Q(t)}{V_e \cdot c_t}
(7) p(t) = p_i \exp \left[ \frac{\Delta Q(t)}{V_e \cdot c_t} \right]

where

V_e = A_e \, h_e \, \phi_e

drainage volume




See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Flowing Material Balance Analysis (FMB)

Material Balance Pressure Plot ][ Material Balance Pressure @model ]





  • No labels