A proxy model of Productivity Index for stabilised reservoir flow.
  
	|   | 
	J  = \frac{q}{p_{\rm frm} - p_{wf}} = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - \epsilon + S} = \frac{2 \pi \cdot \frac{k \, h}{\mu} }{ \ln \frac{r_e}{r_w} - \epsilon + S} | 
  
where
In case of homogeneous reservoir with only one vertical well producing the Dupuit PI @model is the exact analytical solution of Reservoir Flow Model (RFM).
Table 1. Variations to Dupuit PI @model depending  on the reservoir flow regime and the definition/application of Productivity Index.
For the fractured vertical well the geometrical skin-factor 
S_G is related to Fracture half-length 
X_f as:
  
	| (1) | 
	S_G = -\ln \left(\frac{X_f}{2\, r_w} \right) | 
  
 
  
	|   | 
	J  = \frac{q}{p_{\rm frm} - p_{wf}} = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - \epsilon + S} =  \frac{2 \pi M \cdot h}{ \ln \frac{r_e}{r_w} - \epsilon + S}  = \frac{2 \pi k_{abs} \cdot h}{ \ln \frac{r_e}{r_w} - \epsilon + S}  \cdot M_r  = T \cdot M_r(s_w, s_g) | 
  
See also
Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing
Reference
Dupuit, J., Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables, 2eme edition; Dunot, Paris, 1863.