proxy model of Productivity Index for stabilised reservoir flow.

J  = \frac{q}{p_{\rm frm} - p_{wf}} = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - \epsilon + S} = \frac{2 \pi \cdot \frac{k \, h}{\mu} }{ \ln \frac{r_e}{r_w} - \epsilon + S}

where

depending on application may mean a total sandface flowrate () or a product of surface flowrate and FVF ()

depending on application may mean a drain-boundary formation pressure () or drain-area formation pressure ()

wellbore radius

distance to a drainarea boundary

total skin

a model parameter depending on Productivity Index definition and boundary type (, see Table 1 below)


In case of homogeneous reservoir with only one vertical well producing the Dupuit PI @model is the exact analytical solution of Reservoir Flow Model (RFM).


Table 1. Variations to Dupuit PI @model depending  on the reservoir flow regime and the definition/application of Productivity Index.



Steady State flow regime (SS)
J_r  = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - 0.5 + S}
J_e  = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w}  + S}

 
Pseudo-Steady State flow regime (PSS)
J_r  = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - 0.75 + S}
J_e  = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - 0.5 + S}



For the fractured vertical well the geometrical skin-factor  is related to Fracture half-length  as:

S_G = -\ln \left(\frac{X_f}{2\, r_w} \right)



J  = \frac{q}{p_{\rm frm} - p_{wf}} = \frac{2 \pi \sigma}{ \ln \frac{r_e}{r_w} - \epsilon + S} =  \frac{2 \pi M \cdot h}{ \ln \frac{r_e}{r_w} - \epsilon + S}  = \frac{2 \pi k_{abs} \cdot h}{ \ln \frac{r_e}{r_w} - \epsilon + S}  \cdot M_r  = T \cdot M_r(s_w, s_g)


See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Reference


Dupuit, J., Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables, 2eme edition; Dunot, Paris, 1863.