Page tree


Consider a water injector with main pay in Reservoir Layer #1 and spontaneous fracture extending down to Reservoir Layer #2 (see Fig. 1).

Assume that fracture is not fixed and requires surplus pressure  \Delta p_f to get opened against the rock burden. 

When injection bottomhole pressure  p_{wf} is below fracture opening value  p_{wf} < \Delta p_f then water is going to the main pay only (Reservoir Layer #1) and flow radially around the well.

When injection bottomhole pressure  p_{wf} is above fracture opening value  p_{wf} > \Delta p_f then water is going to the fracture and then gets distributed between Reservoir Layer #1 and Reservoir Layer 2


Fig. 1. Dual-layer well schematic



(1) q = q_1 + q_2
(2) p_{wf} = p_e + q/J
(3) J = J_1 + J_2
(4) p_e = \Delta p_f + \frac{J_1 \cdot p_1 + J_2 \cdot (p_2- \delta p_2)}{J_1 + J_2}
(5) p_e = \frac{J_1 \cdot p_1 + J_2 \cdot p_c}{J_1 + J_2}
(6) p_c = \left(1 + \frac{J_1}{J_2} \right) \Delta p_f + p_2 - \delta p_2

where

Well

q

total subsurface flowrate of the well

J

total well productivity Index

p_e

apparent formation pressure of dual-layer formation

h

true vertical height between the layers tops

\rho

wellbore fuid density

g

gravity constant

\Delta p_f

fracture opening pressure
Layer #1

p_{wf}

bottom-hole pr4essure at Layer #1 top

q_1

total subsurface flowrate of the Layer #1

p_1

formation pressure of the Layer #1

J_1

productivity Index of the Layer #1
Layer #2

p_{wf2} = p_{wf} + \rho \, g\, h

bottom-hole pr4essure at Layer #2 top

q_2

total subsurface flowrate of the Layer #2

p_2

formation pressure of the Layer #2

J_2

productivity Index of the Layer #2


(7) p_{wf, 1} = p_{wf} = \Delta p_f + p_1 + q_1/J_1
(8) p_{wf,2} = p_{wf} + \delta p_2 = \Delta p_f + p_2 + q_2/J_2

This leads to

(9) q_1 = J_1 \cdot (p_{wf} - p_1 - \Delta p_f)
(10) q_2 = J_2 \cdot (p_{wf,2} - p_2 - \Delta p_f) = J_2 \cdot (p_{wf} - (p_2 + \Delta p_f-\delta p_2) )

and

(11) q = q_1 + q_2 = q_1 = J_1 \cdot (p_{wf} - (p_1 + \Delta p_f))+ J_2 \cdot (p_{wf} - (p_2-\delta p_2 + \Delta p_f) )
(12) q = (J_1+J_2)\cdot p_{wf} - J_1 \cdot (p_1 + \Delta p_f) + J_2 \cdot ((p_2-\delta p_2 + \Delta p_f) )

or

(13) q = J \cdot (p_{wf}-p_e), \ {\rm where} \ J = J_1 + J_2 \ {\rm and} \ p_e = J^{-1} \cdot (J_1 \cdot (p_1 + \Delta p_f) + J_2 \cdot (p_2-\delta p_2 + \Delta p_f))

or

(14) p_e = \Delta p_f + J^{-1} \cdot (J_1 \cdot p_1 + J_2 \cdot (p_2-\delta p_2))

See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Subsurface E&P Disciplines / Field Study & Modelling / Production Analysis / Productivity Diagnostics

Production Technology / Well Flow Performance ]

Formation pressure (Pe) ] Multi-layer IPR ]


  • No labels