Page tree


Volumetric calculations


(1) q_O = q_{Oo} + q_{Og}
(2) q_G = q_{Gg} + q_{Go}
(3) q_W = q_{Ww}


Following the definition of Solution GOR (Rs) and Vaporized Oil Ratio (Rv) :

(4) R_s = q_{Go}/q_{Oo}
(5) R_v = q_{Og}/q_{Gg}

so that:

(6) q_O = q_{Oo} + R_v \, q_{Gg}
(7) q_G = q_{Gg} + R_s \, q_{Oo}
(8) q_W = q_{Ww}


Following the definition of Oil formation volume factor (Bo) , Gas formation volume factor (Bg) and Water formation volume factor (Bw):

(9) q_{Oo}= \frac{q_o}{B_o}
(10) q_{Gg} = \frac{q_g}{B_g}
(11) q_{Ww} = \frac{q_w}{B_w}

so that:

(12) q_O = \frac{q_o}{B_o} + R_v \,\frac{q_g}{B_g}
(13) q_G = \frac{q_g}{B_g} + R_s \, \frac{q_o}{B_o}
(14) q_W = \frac{q_w}{B_w}

and solving the above system of equations leads to:

(15) q_o = \frac{B_o \cdot (q_O - R_v \, q_G)}{1- R_v \, R_s}
(16) q_g = \frac{B_g \cdot (q_G - R_s \, q_O)}{1- R_v \, R_s}
(17) q_w = B_w \cdot q_w


Mass calculations


The oil phase  ()_o includes oil component  ()_{Oo} and gas component  ()_{Go} so that the oil phase mass flux is:

(18) m_o = m_{Oo} + m_{Go}

The gas phase  ()_g includes gas component  ()_{Gg} and oil component  ()_{Og} so that the gas phase mass flux is:

(19) m_g = m_{Gg} + m_{Og}

The water phase  ()_w includes water component  ()_{Ww} only so that the water phase mass flux is:

(20) m_w = m_{Ww}

(21) m_o = \rho_O \cdot q_{Oo} + \rho_G \cdot q_{Go}
(22) m_g = \rho_G \cdot q_{Gg} + \rho_O \cdot q_{Og}
(23) m_w = \rho_W \cdot q_{Ww}

(24) m_o = \rho_O \cdot q_{Oo} + \rho_G \cdot R_s \, q_{Oo}
(25) m_g = \rho_G \cdot q_{Gg} + \rho_O \cdot R_v \, q_{Gg}
(26) m_w = \rho_W \cdot q_{Ww}

(27) m_o = (\rho_O + \rho_G \cdot R_s) \cdot q_{Oo}
(28) m_g = (\rho_G + \rho_O \cdot R_v) \cdot q_{Gg}
(29) m_w = \rho_W \cdot q_{Ww}

(30) m_o = (\rho_O + \rho_G \cdot R_s) \cdot \frac{q_o}{B_o}
(31) m_g = (\rho_G + \rho_O \cdot R_v) \cdot \frac{q_g}{B_g}
(32) m_w = \rho_W \cdot \frac{q_w}{B_w}

(33) \rho_o = \frac{\rho_O + \rho_G \cdot R_s}{B_o}
(34) \rho_g = \frac{\rho_G + \rho_O \cdot R_v}{B_g}
(35) \rho_w = \frac{\rho_W}{B_w}


The total mass flow of all phases:

(36) \dot m = \dot m_o + \dot m_g + \dot m_w = (\rho_O + \rho_G \cdot R_s) \cdot \frac{q_o}{B_o} + (\rho_G + \rho_O \cdot R_v) \cdot \frac{q_g}{B_g} + \rho_W \cdot \frac{q_w}{B_w}

(37) \dot m = (\rho_O + \rho_G \cdot R_s) \cdot \frac{q_O - R_v \, q_G}{1-R_v \, R_s} + (\rho_G + \rho_O \cdot R_v) \cdot \frac{q_G - R_s \, q_O}{1- R_v \, R_s} + \rho_W \cdot q_W

(38) \dot m = \frac{ (\rho_O + \rho_G \cdot R_s)\cdot (q_O - R_v \, q_G) + (\rho_G + \rho_O \cdot R_v) \cdot (q_G - R_s \, q_O) }{1-R_v \, R_s} + \rho_W \cdot \frac{q_w}{B_w}

(39) \dot m = \frac{ \rho_O \, q_O \, (1- R_v \, R_s) + \rho_G \, q_G \, (1- R_v \, R_s) }{1-R_v \, R_s} + \rho_W \cdot q_W

(40) \dot m = \rho_O \cdot q_O + \rho_G \cdot q_G + \rho_W \cdot q_W = \dot m_O + \dot m_G + \dot m_W

(41) \dot m = \dot m_o + \dot m_g + \dot m_w = \dot m_O + \dot m_G + \dot m_W

which means that total mass flux of all fluid phases is equal to the total mass flux of all fluid components.

As volatile oil model does not assume water-component exchange between phases the equality  (41) can be broken down into two equalities:

(42) \dot m_{HC} = \dot m_o + \dot m_g = \dot m_O + \dot m_G
(43) \dot m_w = \dot m_W


The total fluid density of Volatile Oil fluid @model is given by following equation (see Multiphase fluid for derivation):

(44) \rho = s_o \, \rho_o + s_g \, \rho_g + s_w \, \rho_w


The total fluid compressibility of multiphase fluid is given by following equation (see Multiphase fluid for derivation):

(45) c = s_o \, c_o + s_g \, c_g + s_w \, c_w

See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model / Volatile Oil Fluid @model 





  • No labels