Volumetric calculations
| (1) |
q_O = q_{Oo} + q_{Og} |
|
| (2) |
q_G = q_{Gg} + q_{Go} |
| |
Following the definition of Solution GOR (Rs) and Vaporized Oil Ratio (Rv) :
so that:
| (6) |
q_O = q_{Oo} + R_v \, q_{Gg} |
|
| (7) |
q_G = q_{Gg} + R_s \, q_{Oo} |
| |
Following the definition of Oil formation volume factor (Bo) , Gas formation volume factor (Bg) and Water formation volume factor (Bw):
| (9) |
q_{Oo}= \frac{q_o}{B_o} |
|
| (10) |
q_{Gg} = \frac{q_g}{B_g} |
|
| (11) |
q_{Ww} = \frac{q_w}{B_w} |
|
so that:
| (12) |
q_O = \frac{q_o}{B_o} + R_v \,\frac{q_g}{B_g} |
|
| (13) |
q_G = \frac{q_g}{B_g} + R_s \, \frac{q_o}{B_o} |
|
| (14) |
q_W = \frac{q_w}{B_w} |
|
and solving the above system of equations leads to:
| (15) |
q_o = \frac{B_o \cdot (q_O - R_v \, q_G)}{1- R_v \, R_s} |
|
| (16) |
q_g = \frac{B_g \cdot (q_G - R_s \, q_O)}{1- R_v \, R_s} |
| |
Mass calculations
The oil phase
()_o includes oil component
()_{Oo} and gas component
()_{Go} so that the oil phase mass flux is:
| (18) |
m_o = m_{Oo} + m_{Go} |
The gas phase
()_g includes gas component
()_{Gg} and oil component
()_{Og} so that the gas phase mass flux is:
| (19) |
m_g = m_{Gg} + m_{Og} |
The water phase
()_w includes water component
()_{Ww} only so that the water phase mass flux is:
→
| (21) |
m_o = \rho_O \cdot q_{Oo} + \rho_G \cdot q_{Go} |
|
| (22) |
m_g = \rho_G \cdot q_{Gg} + \rho_O \cdot q_{Og} |
|
| (23) |
m_w = \rho_W \cdot q_{Ww} |
|
→
| (24) |
m_o = \rho_O \cdot q_{Oo} + \rho_G \cdot R_s \, q_{Oo} |
|
| (25) |
m_g = \rho_G \cdot q_{Gg} + \rho_O \cdot R_v \, q_{Gg} |
|
| (26) |
m_w = \rho_W \cdot q_{Ww} |
|
→
| (27) |
m_o = (\rho_O + \rho_G \cdot R_s) \cdot q_{Oo} |
|
| (28) |
m_g = (\rho_G + \rho_O \cdot R_v) \cdot q_{Gg} |
|
| (29) |
m_w = \rho_W \cdot q_{Ww} |
|
→
| (30) |
m_o = (\rho_O + \rho_G \cdot R_s) \cdot \frac{q_o}{B_o} |
|
| (31) |
m_g = (\rho_G + \rho_O \cdot R_v) \cdot \frac{q_g}{B_g} |
|
| (32) |
m_w = \rho_W \cdot \frac{q_w}{B_w} |
|
→
| (33) |
\rho_o = \frac{\rho_O + \rho_G \cdot R_s}{B_o} |
|
| (34) |
\rho_g = \frac{\rho_G + \rho_O \cdot R_v}{B_g} |
|
| (35) |
\rho_w = \frac{\rho_W}{B_w} |
|
The total mass flow of all phases:
| (36) |
\dot m = \dot m_o + \dot m_g + \dot m_w = (\rho_O + \rho_G \cdot R_s) \cdot \frac{q_o}{B_o} + (\rho_G + \rho_O \cdot R_v) \cdot \frac{q_g}{B_g} + \rho_W \cdot \frac{q_w}{B_w} |
→
| (37) |
\dot m = (\rho_O + \rho_G \cdot R_s) \cdot \frac{q_O - R_v \, q_G}{1-R_v \, R_s} + (\rho_G + \rho_O \cdot R_v) \cdot \frac{q_G - R_s \, q_O}{1- R_v \, R_s} + \rho_W \cdot q_W |
→
| (38) |
\dot m = \frac{ (\rho_O + \rho_G \cdot R_s)\cdot (q_O - R_v \, q_G) + (\rho_G + \rho_O \cdot R_v) \cdot (q_G - R_s \, q_O) }{1-R_v \, R_s} + \rho_W \cdot \frac{q_w}{B_w} |
→
| (39) |
\dot m = \frac{ \rho_O \, q_O \, (1- R_v \, R_s) + \rho_G \, q_G \, (1- R_v \, R_s) }{1-R_v \, R_s} + \rho_W \cdot q_W |
→
| (40) |
\dot m = \rho_O \cdot q_O + \rho_G \cdot q_G + \rho_W \cdot q_W = \dot m_O + \dot m_G + \dot m_W |
→
| (41) |
\dot m = \dot m_o + \dot m_g + \dot m_w = \dot m_O + \dot m_G + \dot m_W |
which means that total mass flux of all fluid phases is equal to the total mass flux of all fluid components.
As volatile oil model does not assume water-component exchange between phases the equality
(41) can be broken down into two equalities:
| (42) |
\dot m_{HC} = \dot m_o + \dot m_g = \dot m_O + \dot m_G |
| |
The total fluid density of Volatile Oil fluid @model is given by following equation (see Multiphase fluid for derivation):
| (44) |
\rho = s_o \, \rho_o + s_g \, \rho_g + s_w \, \rho_w |
The total fluid compressibility of multiphase fluid is given by following equation (see Multiphase fluid for derivation):
| (45) |
c = s_o \, c_o + s_g \, c_g + s_w \, c_w |
See Also
Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model / Volatile Oil Fluid @model