Page tree


Given

a mixture of fluid components  C= \{1...n\} with total mass of each component  m_C (assumed to stay constant during dynamic processes)

and

fluid phases ( \alpha = \{1...m\}) sharing the same volume under pressure  p and temperature  T 


then in thermodynamic equilibrium the total mass of C-component will decompose into a sum of fluid components:

(1) m_C = \sum_\alpha m_{C \alpha} (p,T)

where

m_{C \alpha} (p,T)

mass of C-component in  \alpha-phase as a function of pressure  p and temperature  T


This may alternatively rearranaged as:

(2) m_C = \sum_\alpha R_{C \alpha} (p,T) m_\alpha(p, T)

where

R_{C \alpha} (p,T)

cross-phase exchange coefficient of C-component in  \alpha-phase as a function of pressure  p and temperature  T

m_\alpha(p, T)

total mass of  \alpha-phase as a function of pressure  p and temperature



See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis

Cross-phase fluid exchange

  • No labels