Page tree

@wikipedia


One of the Absolute permeability models based on simulating the flow through the multi-pipe conduits or multi-grain pack:

(1) k = 1014.24 \cdot {\rm FZI}^2 \cdot \frac{(\phi -\phi_0)^3}{( 1 - \phi+\phi_0)^2}
(2) {\rm FZI} = \frac{1}{\sqrt{F_S} \, S_{gV} \, \tau }

where

{\rm FZI}

Flow Zone Indicator

S_{gV} = \Sigma_e/V_\phi

surface pore area per unit pore volume

\Sigma_e

pore surface area

\phi

effective porosity

F_S

pore shape factor

V_\phi

pore volume

\phi_0

\tau

pore channel tortuosity


The alternative form is derived from the correlation which is valid in some practical cases:

(3) \frac{1}{\sqrt{F_S} \, S_{gV}} \approx 0.0037 \cdot d

where

d

average grain size

so that Absolute permeability is going to be:

(4) k = \frac{d^2}{72 \cdot \tau^2} \cdot \frac{(\phi -\phi_0)^3}{( 1 - \phi+\phi_0)^2}

where

k

absolute permeability

\phi

effective formation porosity

\phi_0

porosity cut-off

d

grain size

\tau

pore channel tortuosity



This correlation was historical the first physical permeability model, based on the fluid flow in porous media with simplified structure consisted of a bunch of independent capillaries with various diameters.

Later on it's been upgraded to percolation through inter-grain porous space which specifies the Flow Zone Indicator  FZI as a function of grains size distribution, grain shape and packing.

The most popular correlation with a mean grain size  D_g is given as:

(5) FZI = a \cdot D_g

where coefficient  a is a function of grain shape, packing, inter-grain clay and, as a consequence, of inter-grain effective porosity  \phi.


See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Petrophysics / Absolute permeability / Absolute permeability @model


References


J. Kozeny, "Ueber kapillare Leitung des Wassers im Boden." Sitzungsber Akad. Wiss., Wien, 136(2a): 271-306, 1927.




  • No labels