Page tree

@wikipedia


Synonyms
Compressibility factorZ-factor

Disclaimer: Not to be confused with Compressibility  c.

Dimensionless multiplier describing the deviation of a fluid density from ideal gas estimate under the same pressure & temperature conditions:

(1) Z = \frac{p \, V_m}{R \, T} = \frac{p}{\rho} \cdot \frac{M}{R \, T}

where

p

fluid pressure

V_m = V/\nu

fluid molar volume

T

fluid temperature

V

fluid volume

\rho

fluid density

\nu

amount of substance

R

gas constant

M

molar mass of a fluid


Alternatively Z-factor can be expressed through the dynamic fluid properties at reference conditions as:

(2) Z(T, p) = Z^{\circ} \cdot \frac{\rho^{\circ} \, T^{\circ}}{p^{\circ}} \cdot \frac{p}{\rho(T, p) \, T}

where  ()^{\circ} means reference conditions, usually Standard Conditions (STP).


Z-factor can be used to calculate fluid density  \rho and Formation Volume Factor (FVF)  B as:

(3) \rho(T, p) = \rho^{\circ} \cdot \frac{Z^{\circ} \, T^{\circ}}{p^{\circ}} \cdot \frac{p}{Z(T, p) \, T}
(4) B(T, p) = \frac{\rho^{\circ}}{\rho(T, p)} = \frac{p^{\circ} }{Z^{\circ} \, T^{\circ}} \cdot \frac{Z(T, p) \, T}{p}


Z-factor is related to fluid compressibility  c as:

(5) c(p) = \frac{1}{p} - \frac{1}{Z} \frac{dZ}{dp}
(6) Z(p) = Z_0 \cdot \frac{p}{p_0} \cdot \exp \left[ - \int_{p_0}^p c(p) dp \right]



(7) c = \frac{1}{\rho} \frac{d\rho}{dp} = \frac{d \ln \rho}{dp} = \frac{d }{dp} \left( \ln \left(\frac{p}{Z} \right) \right) = \frac{Z}{p} \cdot \frac{d }{dp} \left(\frac{p}{Z} \right) = \frac{Z}{p} \cdot \left( \frac{1}{Z} + p \cdot \frac{d }{dp} \left( \frac{1}{Z} \right) \right) = \frac{1}{p} - \frac{1}{Z} \frac{dZ}{dp}

Rewriting  (5):

(8) \frac{d \ln Z}{dp} = \frac{1}{p} - c(p) \rightarrow \ln \frac{Z}{Z_0} = \ln \frac{p}{p_0} - \int_{p_0}^p c(p) \, dp

which arrives to  (6).


The
Z-factor value for Ideal Gas is strictly unit:  Z(T, p) = 1.

For many real gases (particularly for the most compositions of natural gases) the Z-factor is trending towards unit value ( Z \rightarrow 1) while approaching the STP.

For incompressible fluids  the Z-factor is trending to linear pressure dependence ( Z \rightarrow a \cdot p) with pressure growth.

Modelling Z-factor  Z(T,p) as a function of fluid pressure  p and temperature  T is based on Equation of State.


There is also a good number of explicit Z-factor Correlations @models.


See also


Natural Science / Physics / Thermodynamics / Equation of State

[ Compressibility ]Fluid Compressibility ][ Gas compressibility ]

References










  • No labels