@wikipedia


Amount of heat required to change the temperature of one unit of mole by one unit of temperature:

 c = \frac{C}{\nu} = \frac{1}{\nu} \cdot \frac{\delta Q}{\delta T} 

where

amount of chemical substance 

heat capacity of the material
SymbolDimensionSI unitsOil metric unitsOil field units

M L2 T−2 Θ−1J/(molK)J/(molK)

 BTU/(mol°R)


Molar Heat Capacity is related to Specific Heat Capacity  and Volumetric Heat Capacity  as:

c = M \cdot c_m
c = V_m \cdot c_v

where

molar mass of the substance 

molar volume of the substance 



Molar Heat Capacity depends on the way the heat is transferred and as such is not a material property.

The two major heat transfer processes are isobaric and isohoric which define:

 Isobaric molar heat capacity (cP)  Isochoric molar heat capacity (cV)


The relation between Isobaric molar heat capacity and Isochoric molar heat capacity is given by Mayer's relation which particularly implies that Isobaric molar heat capacity is always greater than  Isochoric molar heat capacity:

c_P \geq c_V


For incompressible matter the Isobaric molar heat capacity (cP) and Isochoric molar heat capacity (cV) are identical:

 c_P = c_V

Most solids have about the same Molar Heat Capacity

 c_P \approx c_V \approx 3 \, R \approx 24.94 \, \,  {\rm J/(mol⋅K)}

where

Gas constant


For the ideal gas the Molar Heat Capacity is predicted as:

c_V = \frac{f}{2} \, R
c_P = c_V + R = \frac{f+2}{2} \, R

where

number of molecular freedom degrees


Most aklanes reach values  and  at very high temperatures (thousands of K).


The Molar Heat Capacity of the mixture in thermodynamic equilibrium follows the simple mixing rule:

c = \sum_i \, x_i \, c_i

where

mole fraction of the -th mixture component, subjected to


See also


Physics / Thermodynamics / Thermodynamic processHeat Transfer / Heat Capacity

[ Heat ][ Heat Capacity Ratio (γ) ]Mayer's relation ]