Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 89 Current »

Total produced or injected flowrate of all fluids across the well-reservoir contact with the volumes measured at the sandface temperature and pressure conditions.

Usually abbreviated as  q_t or qB (with the latter does not imply a product) or specifically q^{\uparrow}_t for production and  q^{\downarrow}_t for injection.

The concept applies both to producing and injecting wells.

The main purpose of describing the intakes and offtakes in terms of the Total sandface flowrate  q_t is that it measures the actual flowing volumes in porous formations and as such directly relate to reservoir pressure.


For volatile oil fluid model the total sandface flowrate is related to surface flowrates of fluid components as:

(1) q^{\uparrow}_t = q^{\uparrow}_w + q^{\uparrow}_o + q^{\uparrow}_g = B_w \, q^{\uparrow}_W + (B_o - R_s \, B_g) \, q^{\uparrow}_O + (B_g - R_v \, B_o) \, q^{\uparrow}_G

where

q^{\uparrow}_wq^{\uparrow}_oq^{\uparrow}_g

water sandface flowrate, oil sandface flowrategas sandface flowrate

q^{\uparrow}_Wq^{\uparrow}_Oq^{\uparrow}_G

Water surface flowrate, Oil surface flowrateGas surface flowrate

B_w, \, B_o, \, B_g

formation volume factors between sandface pressure/temperature conditions and surface measurement unit (usually separator or processing plant)

R_s, \, R_v

Solution GOR and Vaporized oil ratio at sandface pressure/temperature conditions


The total sandface flowrate  q^{\uparrow}_t of production is related to 
Liquid production rate  q^{\uparrow}_L as:

(2) q^{\uparrow}_t = \Big[ B_w Y_W + \Big( \, (B_o - R_s B_g) + Y_G \cdot (B_g - R_v B_o) \, \Big) \cdot (1-Y_W) \Big] \cdot q^{\uparrow}_L

where

\displaystyle Y_W = \frac{q^{\uparrow}_W}{q^{\uparrow}_L}

Production Water Cut

\displaystyle Y_G = \frac{q^{\uparrow}_G}{q^{\uparrow}_O}

Production Gas-Oil-Ratio = GOR



Starting with definition of Total sandface flowrate  (Total sandface flowrate = qt:1) and substituting the expression of Oil surface flowrateGas surface flowrateWater surface flowrate through Liquid production rate one arrives to  (2).


It simplifies for the 
Black Oil model ( R_v = 0) to:

(3) q^{\uparrow}_t = B_w \, q^{\uparrow}_W + (B_o - R_s \, B_g) \, q^{\uparrow}_O + B_g \, q^{\uparrow}_G

or

(4) q^{\uparrow}_t = \Big[ B_w Y_W + \Big( \, (B_o - R_s B_g) + Y_G \cdot B_g \, \Big) \cdot (1-Y_W) \Big] \cdot q^{\uparrow}_L


It simplifies further down to production from
undersaturated reservoir as:

(5) q^{\uparrow}_t = B_w \, q^{\uparrow}_W + B_o \, q^{\uparrow}_O = \Big[ B_w Y_W + B_o \cdot (1- Y_W) \Big] \cdot q^{\uparrow}_L

and even simpler for single-phase fluid (water, dead oil or dry gas) with  surface flow rate q^{\uparrow} and formation volume factor B as below:

(6) q^{\uparrow}_t = q^{\uparrow} B, \quad {\rm meaning:} \quad q_t = q^{\uparrow}_W \cdot B_w \quad {\rm or} \quad q_t = q^{\uparrow}_O \cdot B_o \quad {\rm or} \quad q_t = q^{\uparrow}_G \cdot B_G


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing (WT) / Flowrate Testing / Flowrate

Well & Reservoir Surveillance ]

Sandface flowrates ] [ Oil sandface flowrate ] [ Gas sandface flowrate ] [ Water sandface flowrate ] 

Surface flowrates ] [ Oil surface flowrate ] [ Gas surface flowrate ] [ Water surface flowrate ] [ Liquid production rate ]

Non-linear multi-phase diffusion derivation @model ]








  • No labels