Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »


The general form of non-linear single-phase pressure diffusion model is given by: 

(1) \beta({\bf r},p) \, \frac{\partial p}{\partial t} = \nabla \Big( M({\bf r},p, \nabla p) \cdot \nabla p \Big)

with non-linear dependence of fluid mobility  M on reservoir pressure  p and spatial pressure gradient  \nabla p:

(2) M = k_{air}({\bf r}) \, M_r(p, \nabla p)

and non-linear dependence of compressivity  \beta and compressibility  c_t on reservoir pressure  p :

(3) \beta = c_t({\bf r},p) \cdot \phi({\bf r},p)
(4) c_t({\bf r},p) = c_r({\bf r},p) + \sum_\alpha s_\alpha({\bf r}) c_\alpha(p)

where

M(p, \nabla p)

Fluid mobility as function of reservoir pressure  p and spatial pressure gradient  \nabla p

M_r(p, \nabla p)

Relative mobility as function of reservoir pressure  p and spatial pressure gradient  \nabla p

\beta(p)

Compressivity as function of reservoir pressure  p 

c_t({\bf r},p)

Total compressibility as function of reservoir pressure  p and location \bf r

c_r({\bf r},p)

Rock compressibility as function of reservoir pressure  p and location \bf r

c_\alpha(p)

\alpha-phase compressibility as function of reservoir pressure  p for \alpha = \{ w, \, o, \, g \}

s_\alpha({\bf r})

\alpha-phase reservoir saturation for \alpha = \{ w, \, o, \, g \}

\phi_e({\bf r}, p)

Effective porosity as function of reservoir pressure  p and location \bf r

k_{air}({\bf r})

Formation permeability at initial formation pressure p_0 as function of location \bf r

\mu(p_0)

Dynamic fluid viscosity at initial formation pressure p_0

\xi (p, |\nabla p|)

Some function of reservoir pressure  p and spatial pressure gradient  \nabla p with the following asymptotic behaviour: \xi (p \rightarrow p_0, |\nabla p| \rightarrow 0) \rightarrow 1


The same account for non-linearity can be applied for non-linear multi-phase pressure diffusion when Pressure Diffusion Model Validity Scope is met and multi-phase pressure dynamics can be modeled as effective single-phase pressure dynamics.


Below is the list of popular physical phenomena and their mathematical models which can be covered by  (1) model.


Forcheimer


Pressure diffusion equation is going to be:

\с_t \phi_e \frac{\partial p}{\partial t} = \nabla ( \frac{k(\nabla p)}{\mu} \nabla p)

where

k(\nabla p)

Dynamic fluid viscosity as function of reservoir pressure  p 

k(p)

Formation permeability as function of reservoir pressure  p 

c_f(p)

Total compressibility as function of reservoir pressure  p 


See also


Pressure diffusion / Pressure Diffusion @model /  Single-phase pressure diffusion model  / Non-linear single-phase pressure diffusion @model



  • No labels