Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 27 Next »


The base driving equations of a pipe flow is:

Steady-state 1D inviscid fluid flowPipe Flow Mass ConservationEquation of State (EOS)
(1) \frac{d p}{d l} = -\rho \, u \, \frac{d u}{d l} + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}
(2) j_m(l) = j_m = \rm const
(3) \rho = \rho(p, T)

where

l

distance along the fluid flow streamline

\theta(l)

inclinational deviation,   \displaystyle \cos \theta = dz/dl

z(l)

elevation along the 1D flow trajectory 

T(l)

fluid temperature

p(l)

fluid pressure

\rho(l)

fluid density

{\bf u}(l)

fluid velocity vector 

u(l)

superficial velocity of the pipe flow

{\bf f}_{\rm cnt}(l)

volumetric density of all contact forces exerted on fluid body

{f}_{\rm cnt, l}(l) = {\bf e}_u \cdot {\bf f}_{\rm cnt}

projection of  {\bf f}_{\rm cnt} onto the unit fluid velocity vector  {\bf e}_u = { | {\bf u} |} ^{-1} \, {\bf u}

j_m

fluid mass flux

\dot m

mass flowrate

g

standard gravity constant



(4) \left( 1 - j_m^2 \cdot \frac{c}{\rho} \right ) \frac{dp}{dl} = \rho \, g \, \frac{dz}{dl} - \frac{j_m^2 }{2 d} \cdot \frac{f(p)}{\rho}
(5) q(l) = \frac{\rho_s \cdot q_s}{\rho}
(6) u(l) = \frac{\rho_s \cdot q_s}{\rho(p) \cdot A}

See Also


Petroleum Industry / Upstream / Pipe Flow Simulation / Water Pipe Flow @model / Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model

Darcy friction factor ] [ Darcy friction factor @model ]

Euler equation ]









  • No labels