Page tree


The base driving equations of a pipe flow are:

Steady-state 1D inviscid fluid flowPipe Flow Mass Conservation
(1) \frac{d p}{d l} = -\rho \, u \, \frac{d u}{d l} + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}
(2) j_m(l) = j_m = \rho(l) \cdot u = \rm const
Equation of State (EOS)Darcy–Weisbach
(3) \rho = \rho(p, T)
(4) f_{\rm cnt, l} = - f \cdot \frac{ \rho \, u^2 \, }{2 d}

where

l

distance along the fluid flow streamline

\theta(l)

inclinational deviation,   \displaystyle \cos \theta = dz/dl

z(l)

elevation along the 1D flow trajectory 

T(l)

fluid temperature

p(l)

fluid pressure

\rho(l)

fluid density

{\bf u}(l)

fluid velocity vector 

u(l)

superficial velocity of the pipe flow

{\bf f}_{\rm cnt}(l)

volumetric density of all contact forces exerted on fluid body

f_{\rm cnt, l}(l) = {\bf e}_u \cdot {\bf f}_{\rm cnt}

projection of  {\bf f}_{\rm cnt} onto the unit fluid velocity vector  {\bf e}_u = { | {\bf u} |} ^{-1} \, {\bf u}

j_m = \rho(l) \cdot u(l)

fluid mass flux

\dot m

mass flowrate

g

standard gravity constant


Substituting  (2) and  (4) into  (1):

(5) \frac{d p}{d l} = -j_m \cdot \frac{d}{d l} \left( \frac{j_m}{\rho} \right) + \rho \, g \, \cos \theta - f \cdot \frac{ \rho \, }{2 d} \cdot \left( \frac{j_m}{\rho} \right)^2
(6) \frac{d p}{d l} = j^2_m \cdot \frac{1}{\rho^2} \frac{d \rho}{dl} + \rho \, g \, \cos \theta - \frac{j_m^2}{2 d} \cdot \frac{f}{\rho}
(7) \frac{d p}{d l} = j^2_m \cdot \frac{1}{\rho^2} \frac{d \rho}{dp} \cdot \frac{d p}{dl} + \rho \, g \, \cos \theta - \frac{j_m^2}{2 d} \cdot \frac{f}{\rho}
(8) \frac{d p}{d l} = j^2_m \cdot \frac{1}{\rho} \cdot c \cdot \frac{d p}{dl} + \rho \, g \, \cos \theta - \frac{j_m^2}{2 d} \cdot \frac{f}{\rho}

and finally

(9) \left( 1 - j_m^2 \cdot \frac{c}{\rho} \right ) \frac{dp}{dl} = \rho \, g \, \cos \theta - \frac{j_m^2 }{2 d} \cdot \frac{f}{\rho}

Alternative forms


(10) \left[ \rho -j_m^2 \, c \right] \cdot \frac{d p}{dl} = \rho^2 \, g \, \cos \theta - \frac{j_m^2 }{2d} \cdot f(\rho)
(11) \left[ \frac{1}{c} - \frac{j_m^2}{\rho} \right] \cdot \frac{d \rho}{dl} = \rho^2 \, g \, \cos \theta - \frac{j_m^2 }{2d} \cdot f(\rho)


See Also


Petroleum Industry / Upstream / Pipe Flow Simulation / Water Pipe Flow @model / Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model

Darcy friction factor ] [ Darcy friction factor @model ]

Euler equation ]









  • No labels